A064553 a(1) = 1, a(prime(i)) = i + 1 for i > 0 and a(u * v) = a(u) * a(v) for u, v > 0.
1, 2, 3, 4, 4, 6, 5, 8, 9, 8, 6, 12, 7, 10, 12, 16, 8, 18, 9, 16, 15, 12, 10, 24, 16, 14, 27, 20, 11, 24, 12, 32, 18, 16, 20, 36, 13, 18, 21, 32, 14, 30, 15, 24, 36, 20, 16, 48, 25, 32, 24, 28, 17, 54, 24, 40, 27, 22, 18, 48, 19, 24, 45, 64, 28, 36, 20, 32, 30, 40, 21, 72, 22, 26
Offset: 1
Examples
a(5) = a(prime(3)) = 3 + 1 = 4; a(14) = a(2*7) = a(prime(1)* prime(4)) = (1+1)*(4+1) = 10.
Links
Crossrefs
Programs
-
Haskell
a064553 1 = 1 a064553 n = product $ map ((+ 1) . a049084) $ a027746_row n -- Reinhard Zumkeller, Apr 09 2012, Feb 17 2012, Jan 28 2011
-
Maple
A064553 := proc(n) local a,f,p,e ; a := 1 ; for f in ifactors(n)[2] do p :=op(1,f) ; e :=op(2,f) ; a := a*(numtheory[pi](p)+1)^e ; end do: a ; end proc: # R. J. Mathar, Sep 07 2012
-
Mathematica
nn=100; a=Table[0, {nn}]; a[[1]]=1; Do[If[PrimeQ[i], a[[i]]=PrimePi[i]+1, p=FactorInteger[i][[1,1]]; a[[i]] = a[[p]]*a[[i/p]]], {i, 2, nn}]; a (* T. D. Noe, Dec 12 2004, revised Sep 27 2011 *) Array[Apply[Times, Flatten@ Map[ConstantArray[#1, #2] & @@ # &, FactorInteger[ #]] /. p_ /; PrimeQ@ p :> PrimePi@ p + 1] &, 74] (* Michael De Vlieger, Aug 22 2017 *)
-
PARI
A064553(n)={n=factor(n);n[,1]=apply(f->1+primepi(f),n[,1]);factorback(n)} \\ M. F. Hasler, Aug 28 2012
-
Scheme
(define (A064553 n) (if (= 1 n) n (* (+ 1 (A055396 n)) (A064553 (A032742 n))))) ;; Antti Karttunen, Aug 22 2017
Formula
a(A000040(n)) = n+1.
Let the prime factorization of n be p1^e1...pk^ek, then a(n) = (pi(p1)+1)^e1...(pi(pk)+1)^ek, where pi(p) is the index of prime p. - T. D. Noe, Dec 12 2004
From Antti Karttunen, Aug 22 2017: (Start)
a(A290641(n)) = n. (End)
Extensions
Displayed values double-checked with new PARI code by M. F. Hasler, Aug 28 2012
Comments