cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064570 Binomial transform of (2n)!.

Original entry on oeis.org

1, 3, 29, 799, 43353, 3837851, 501393973, 90608944119, 21633834338609, 6593857931708083, 2497877833687172301, 1151118261673522046543, 634098400947597342716809, 411445662820653995008883019
Offset: 0

Views

Author

Karol A. Penson, Sep 20 2001

Keywords

Comments

Compare with A229464. - Peter Bala, Sep 25 2013

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k)!,{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Sep 26 2013 *)

Formula

In Maple notation: a(n)=hypergeom([1, 1/2, -n], [], -4), n=0, 1, ...
a(n) = Integral_{x>=0} ((x^4-1)/(x^2-1))^n*exp(-x) dx. - Gerald McGarvey, Oct 14 2006
From Peter Bala, Sep 25 2013: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)*(2*k)!.
Clearly a(n) is always odd; indeed, a(n) = 1 + 2*n*A229464(n-1) for n >= 1.
Recurrence equation: a(n) = 1 + 2*n*(2*n - 1)*a(n-1) - 2*n*(2*n - 2)*a(n-2) with a(0) = 1 and a(1) = 3.
O.g.f. Sum_{k >= 0} (2*k)!*x^k/(1 - x)^(k + 1) = 1 + 3*x + 29*x^2 + 799*x^3 + .... (End)
Recurrence (homogeneous): a(n) = (4*n^2 - 2*n + 1)*a(n-1) - 2*(n-1)*(4*n-3)*a(n-2) + 4*(n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Sep 26 2013
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / exp(2*n). - Vaclav Kotesovec, Sep 26 2013
From Peter Bala, Nov 26 2017: (Start)
E.g.f.: exp(x)*Sum_{n >= 0} A001813(n)*x^n.
a(k) = a(0) (mod k) for all k (by the inhomogeneous recurrence equation).
More generally a(n+k) = a(n) (mod k) for all n and k by an induction argument on n.
It follows that for each positive integer k, the sequence a(n) (mod k) is periodic, with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 3, 9, 9, 3, 1, 3, 9, 9, 3, ... with exact period 5. (End)