A046662 Sum of mistyped version of binomial coefficients.
1, 2, 7, 52, 749, 17686, 614227, 29354312, 1844279257, 147273109354, 14561325802271, 1745720380045852, 249461639720702917, 41886684733511640062, 8164388189339113521259, 1828191138807263097870256, 466057478369217965809683377, 134193343258948416556377786322
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..253
- Roland Bacher, Counting Packings of Generic Subsets in Finite Groups, Electr. J. Combinatorics, 19 (2012), #P7. - From _N. J. A. Sloane_, Feb 06 2013
Crossrefs
Programs
-
Mathematica
Table[Sum[(n!k!)/(n-k)!,{k,0,n}],{n,0,20}] (* Harvey P. Dale, Sep 29 2012 *)
Formula
a(n) = Sum_{k=0..n} n!*k!/(n-k)!.
E.g.f.: exp(x)*F(x), with F(x) = Sum_{k>=0} k!*x^k. - Ralf Stephan, Apr 02 2004
a(n) = n^2*a(n - 1) - n*(n - 1)*a(n - 2) + 1. - Vladeta Jovovic, Jul 15 2004
From Peter Bala, Nov 26 2017: (Start)
a(k) == a(0) (mod k) for all k (by the inhomogeneous recurrence equation).
More generally, a(n+k) = a(n) (mod k) for all n and k (by an induction argument on n). It follows that for each positive integer k, the sequence a(n) (mod k) is periodic, with the exact period dividing k. For example, modulo 10 the sequence becomes 1, 2, 7, 2, 9, 6, 7, 2, 7, 4, 1, 2, 7, 2, 9, 6, 7, 2, 7, 4, ... with exact period 10. (End)
G.f.: Sum_{k>=0} (k!)^2*x^k/(1 - x)^(k+1). - Ilya Gutkovskiy, Apr 12 2019
a(n) ~ (n!)^2. - Vaclav Kotesovec, May 03 2021
a(n) = 3F0(1,1,-n;;-1). - R. J. Mathar, Jun 26 2024
Extensions
Corrected and extended by Harvey P. Dale, Sep 29 2012
Comments