A089041
Inverse binomial transform of squares of factorial numbers.
Original entry on oeis.org
1, 0, 3, 26, 453, 11844, 439975, 22056222, 1436236809, 117923229512, 11921584264011, 1455483251191650, 211163237294447053, 35913642489947449356, 7077505637217289437423, 1599980633296779087784934, 411293643476907595937924625, 119299057697083019137937718672
Offset: 0
2-tuple combinatorics: a(1)=0 because the only list of 2-tuples with numbers 1 is [(1,1)] and this is a coincidence for j=1.
2-tuple combinatorics: the a(2)=3 coincidence free 2-tuple lists of length n=2 are [(1,2),(2,1)], [(2,1),(1,2)] and [(2,2),(1,1)]. The list [(1,1),(2,2)] has two coincidences (j=1 and j=2).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 187, Exercise 13.(a), for r=2.
Cf.
A001044,
A046662 (binomial transform of squares of factorial numbers).
(-1)^n times the polynomials in
A099599 evaluated at -1.
-
a:= proc(n) option remember;
`if`(n<2, 1-n, n^2*a(n-1)+n*(n-1)*a(n-2)+(-1)^n)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jun 21 2013
-
Table[n!Sum[(-1)^k(n-k)!/k!,{k,0,n}],{n,0,15}] (* Geoffrey Critzer, Jun 17 2013 *)
Charalambides reference and comments with combinatorial examples from
Wolfdieter Lang, Jan 21 2008
A343898
a(n) = Sum_{k=0..n} (k!)^3 * binomial(n,k).
Original entry on oeis.org
1, 2, 11, 244, 14741, 1799366, 383827807, 130673579576, 66583061972009, 48379301165408266, 48265538214413425331, 64129741094923528310012, 110669722298686436099306941, 242891356723607474283206170574, 665950191893557715599111566813191, 2246102991406652396042587363523672896
Offset: 0
-
a[n_] := Sum[(k!)^3 * Binomial[n, k], {k, 0, n}]; Array[a, 16, 0] (* Amiram Eldar, May 05 2021 *)
-
a(n) = sum(k=0, n, k!^3*binomial(n, k));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!^3*x^k/(1-x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^2*x^k)))
A343899
a(n) = Sum_{k=0..n} (k!)^k * binomial(n,k).
Original entry on oeis.org
1, 2, 7, 232, 332669, 24884861086, 139314218808181027, 82606412229102532926819812, 6984964247802365417561163907914436537, 109110688415634181158572146813823590758078301022074, 395940866122426284350759726810156652343313286283891529199276099071
Offset: 0
-
a[n_] := Sum[(k!)^k * Binomial[n, k], {k, 0, n}]; Array[a, 11, 0] (* Amiram Eldar, May 05 2021 *)
-
a(n) = sum(k=0, n, k!^k*binomial(n, k));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k!*x)^k/(1-x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, k!^(k-1)*x^k)))
A343900
a(n) = Sum_{k=0..n} (k!)^(k+1) * binomial(n,k).
Original entry on oeis.org
1, 2, 11, 1324, 7967861, 2986023826166, 100306147958903465407, 416336313421816733159702737376, 281633758448076539969292901914477101456489, 39594086612245054028213574779019294652734771094507399786
Offset: 0
-
a[n_] := Sum[(k!)^(k+1) * Binomial[n, k], {k, 0, n}]; Array[a, 10, 0] (* Amiram Eldar, May 05 2021 *)
-
a(n) = sum(k=0, n, k!^(k+1)*binomial(n, k));
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, k!^(k+1)*x^k/(1-x)^(k+1)))
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k!*x)^k)))
A343928
a(n) = Sum_{k=0..n} (k!)^n * binomial(n,k).
Original entry on oeis.org
1, 2, 7, 244, 337061, 24923091206, 139331988275478727, 82607113404338664216300296, 6984967577834038055008791270166057993, 109110690950275218023122492287310115968068596613130, 395940866518366059877297056617763923418318903997411043997258716171
Offset: 0
-
a[n_] := Sum[(k!)^n * Binomial[n, k], {k, 0, n} ]; Array[a, 11, 0] (* Amiram Eldar, May 04 2021 *)
-
a(n) = sum(k=0, n, k!^n*binomial(n, k));
A343929
a(n) = Sum_{k=0..n} (k!)^(n+1) * binomial(n,k).
Original entry on oeis.org
1, 2, 11, 1348, 7993925, 2986939982086, 100308280020162672007, 416336818263472141683094788104, 281633775231427434285800695714399092181001, 39594086714441777969538839399390619086007952991080833034
Offset: 0
-
a[n_] := Sum[(k!)^(n+1) * Binomial[n, k], {k, 0, n} ]; Array[a, 10, 0] (* Amiram Eldar, May 04 2021 *)
-
a(n) = sum(k=0, n, k!^(n+1)*binomial(n, k));
A371767
Triangle read by rows: T(n, k) = (k! * n!)/(n - k)!.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 12, 36, 1, 4, 24, 144, 576, 1, 5, 40, 360, 2880, 14400, 1, 6, 60, 720, 8640, 86400, 518400, 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600, 1, 8, 112, 2016, 40320, 806400, 14515200, 203212800, 1625702400
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 4;
[3] 1, 3, 12, 36;
[4] 1, 4, 24, 144, 576;
[5] 1, 5, 40, 360, 2880, 14400;
[6] 1, 6, 60, 720, 8640, 86400, 518400;
[7] 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600;
Showing 1-7 of 7 results.
Comments