A135809
Number of coincidence-free length n lists of 3-tuples with all numbers 1,...,n in tuple position k, for k=1,2,3.
Original entry on oeis.org
1, 0, 7, 194, 13005, 1660964, 363083155, 125447139558, 64534483387801, 47199368682436040, 47309812970969661471, 63078455495155600593290, 109143265990975402533003877, 240033842542243124391262433004
Offset: 0
3-tuple combinatorics: a(1)=0 because the only list of 3-tuples with numbers 1 is [(1,1,1)] and this is a coincidence for j=1.
3-tuple combinatorics: the a(2)=7 coincidence-free 3-tuple lists of length n=2 are [(1,1,2),(2,2,1)], [(1,2,1),(2,1,2)], [(2,1,1),(1,2,2)], [(2,2,1), (1,1,2)], [(2,1,2),(1,2,1)], [(1,2,2),(2,1,1)] and [(2,2,2),(1,1, 1)]. The list [(1,1,1),(2,2,2)] has in fact two coincidences (j=1 and j=2).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 187, Exercise 13.(a), for r=3.
Cf.
A089041 (coincidence-free 2-tuples),
A135810 (coincidence-free 4-tuples).
-
Table[Sum[(-1)^k Binomial[n, k](n-k)!^3, {k, 0, n}], {n, 0, 13}] (* Geoffrey Critzer, Jun 17 2013 *)
-
a(n)=sum(k=0,n,(-1)^k*binomial(n, k)*(n-k)!^3) \\ Charles R Greathouse IV, Nov 17 2016
A135814
Triangle of numbers of coincidence-free length n-m lists of m-tuples with all numbers 1,...,n-m in tuple position k, for k=1..m.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 2, 3, 0, 1, 0, 9, 26, 7, 0, 1, 0, 44, 453, 194, 15, 0, 1, 0, 265, 11844, 13005, 1250, 31, 0, 1, 0, 1854, 439975, 1660964, 326685, 7682, 63, 0, 1, 0, 14833, 22056222, 363083155, 205713924, 7931709, 46466, 127, 0, 1, 0, 133496
Offset: 0
[1]; [0,1]; [0,0,1]; [0,1,0,1]; [,0,2,3,0,1]; [0,9,26,7,0,1]; ...
The a(5,3)=7 lists of length 5-3=2 with coincidence-free 3-tuples are [(1,1,2),(2,2,1)], [(1,2,1),(2,1,2)], [(2,1,1),(1,2,2)], [(1,2,2),(2,1,1)], [(2,1,2),(1,2,1)], [(2,2,1),(1,1,2)] and [(2,2,2),(1,1,1)]. The list [(1,1,1),(2,2,2)] is not coincidence-free because (1,1,1) appears at position 1 and also because (2,2,2) appears at position 2.
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 187, Exercise 13.(a).
A371767
Triangle read by rows: T(n, k) = (k! * n!)/(n - k)!.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 12, 36, 1, 4, 24, 144, 576, 1, 5, 40, 360, 2880, 14400, 1, 6, 60, 720, 8640, 86400, 518400, 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600, 1, 8, 112, 2016, 40320, 806400, 14515200, 203212800, 1625702400
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 4;
[3] 1, 3, 12, 36;
[4] 1, 4, 24, 144, 576;
[5] 1, 5, 40, 360, 2880, 14400;
[6] 1, 6, 60, 720, 8640, 86400, 518400;
[7] 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600;
A226780
Triangular array read by rows. T(n,k) is the number of 2 tuple lists of length n that have exactly k coincidences; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 26, 9, 0, 1, 453, 104, 18, 0, 1, 11844, 2265, 260, 30, 0, 1, 439975, 71064, 6795, 520, 45, 0, 1, 22056222, 3079825, 248724, 15855, 910, 63, 0, 1, 1436236809, 176449776, 12319300, 663264, 31710, 1456, 84, 0, 1
Offset: 0
1;
0, 1;
3, 0, 1;
26, 9, 0, 1;
453, 104, 18, 0, 1;
11844, 2265, 260, 30, 0, 1;
439975, 71064, 6795, 520, 45, 0, 1;
22056222, 3079825, 248724, 15855, 910, 63, 0, 1;
-
b:= proc(n) option remember;
`if`(n<2, 1-n, n^2*b(n-1)+n*(n-1)*b(n-2)+(-1)^n)
end:
T:= (n, k)-> binomial(n, k) * b(n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 21 2013
-
a = Table[Sum[(-1)^k Binomial[n,k](n-k)!^2, {k,0,n}], {n,0,15}]; Table[Drop[Transpose[Table[Table[Binomial[n,i]*a[[n-i+1]], {n,0,10}], {i,0,10}]][[j]], -11+j], {j, 10}]//Grid
Showing 1-4 of 4 results.
Comments