A064580 Triangle associated with rooted trees with a degree constraint (A036765).
1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104, 1, 7, 27, 75, 161, 273, 357, 309, 1, 8, 35, 110, 270, 536, 866, 1100, 939, 1, 9, 44, 154, 423, 951, 1782, 2772, 3441, 2905, 1, 10, 54, 208, 630, 1572, 3310, 5928, 8946, 10900, 9118
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 2; 1, 3, 5, 5; 1, 4, 9, 14, 13; 1, 5, 14, 28, 40, 36; ...
Crossrefs
Programs
-
Mathematica
a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[, ] = 0; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
-
Sage
# uses[riordan_array from A256893] M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse() for m in M[1:]: print([r for r in reversed(list(m)) if r != 0]) # Peter Luschny, Aug 17 2016
Formula
a(n, k) = a(n-1, k) + a(n-1, k-1) + a(n-1, k-2) + a(n-1, k-3) with a(0, 0)=1 and a(n, k)=0 if n < k or k < 0.
Extensions
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007
Comments