cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064580 Triangle associated with rooted trees with a degree constraint (A036765).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 13, 1, 5, 14, 28, 40, 36, 1, 6, 20, 48, 87, 118, 104, 1, 7, 27, 75, 161, 273, 357, 309, 1, 8, 35, 110, 270, 536, 866, 1100, 939, 1, 9, 44, 154, 423, 951, 1782, 2772, 3441, 2905, 1, 10, 54, 208, 630, 1572, 3310, 5928, 8946, 10900, 9118
Offset: 0

Views

Author

Henry Bottomley, Sep 21 2001

Keywords

Comments

Main diagonal is A036765. - Paul D. Hanna, Nov 18 2016

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,  2;
  1,  3,  5,  5;
  1,  4,  9, 14, 13;
  1,  5, 14, 28, 40, 36;
  ...
		

Crossrefs

Columns include A000012, A000027, A000096.
Main diagonal is A036765.
The sequence of triangles A010054 (triangle indicator), A007318 (Pascal), A026300 (Motzkin), A064580, ... converges to the triangle A009766 (Catalan).
Row sums give A159772.

Programs

  • Mathematica
    a[n_, k_] /; 0 <= k <= n = a[n, k] = a[n - 1, k] + a[n - 1, k - 1] + a[n - 1, k - 2] + a[n - 1, k - 3]; a[0, 0] = 1; a[, ] = 0;
    Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018 *)
  • Sage
    # uses[riordan_array from A256893]
    M = riordan_array(1, x/(1+x+x^2+x^3), 12).inverse()
    for m in M[1:]:
        print([r for r in reversed(list(m)) if r != 0]) # Peter Luschny, Aug 17 2016

Formula

a(n, k) = a(n-1, k) + a(n-1, k-1) + a(n-1, k-2) + a(n-1, k-3) with a(0, 0)=1 and a(n, k)=0 if n < k or k < 0.

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 17 2007