A064591 Nonunitary perfect numbers: k is the sum of its nonunitary divisors; i.e., k = sigma(k) - usigma(k).
24, 112, 1984, 32512, 134201344, 34359476224, 549754765312
Offset: 1
Examples
The sum of the nonunitary divisors of 24 is 2 + 4 + 6 + 12 = 24.
Links
- Steve Ligh and Charles R. Wall, Functions of Nonunitary Divisors, Fibonacci Quarterly, Vol. 25 (1987), pp. 333-338.
- MathOverflow, Are all nonunitary perfect numbers in the form 4k where k is an even perfect number?
Crossrefs
Programs
-
Mathematica
nusigma[ n_ ] := DivisorSigma[ 1, n ]-Times@@(1+Power@@#&/@FactorInteger[ n ]); For[ n=1, True, n++, If[ nusigma[ n ]==n, Print[ n ] ] ] Do[s0=0;s1=0;Do[d=Divisors[n][[i]];If[Mod[d,2]==0,s0=s0+1/d,s1=s1+1/d],{i,1,Length[Divisors[n]]}];If[2*s0-s1==1,Print[n]],{n,2,10^9,2}] (* Michel Lagneau, Jan 21 2015 *)
Comments