cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064603 Partial sums of A001158: Sum_{j=1..n} sigma_3(j).

Original entry on oeis.org

1, 10, 38, 111, 237, 489, 833, 1418, 2175, 3309, 4641, 6685, 8883, 11979, 15507, 20188, 25102, 31915, 38775, 47973, 57605, 69593, 81761, 98141, 113892, 133674, 154114, 179226, 203616, 235368, 265160, 302609, 339905, 384131, 427475, 482736
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, Sum_{k=1..n} sigma_m(k) = Sum_{k=1..n} k^m * floor(n/k). - Daniel Suteu, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[3, #] &, 36] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 3)); \\ Michel Marcus, Nov 04 2017
    
  • PARI
    a(n) = sum(k=1, n, k^3 * (n\k)); \\ Daniel Suteu, Nov 08 2018
    
  • Python
    from math import isqrt
    def A064603(n): return (-(s:=isqrt(n))**3*(s+1)**2 + sum((q:=n//k)*(4*k**3+q*(q*(q+2)+1)) for k in range(1,s+1)))>>2 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = a(n-1) + A001158(n) = Sum_{j=1..n} sigma_3(j), where sigma_3(j) = A001158(j).
G.f.: (1/(1 - x))*Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ Pi^4 * n^4 / 360. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} ((1/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^3 * floor(n/k). - Daniel Suteu, Nov 08 2018