cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A064606 Numbers k such that A064603(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 45, 184, 210, 267, 732, 1282, 3487, 98374, 137620, 159597, 645174, 3949726, 7867343, 13215333, 14153570, 14262845, 317186286, 337222295, 2788845412, 10937683400, 72836157215, 95250594634
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(22) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(26) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding divisor-cube sums for j = 1..7 gives 1+9+28+73+126+252+344 = 833 = 7*119, which is divisible by 7, so 7 is a term and the integer quotient is 119.
		

Crossrefs

Programs

Formula

(Sum_{j=1..k} sigma_3(j)) mod k = A064603(k) mod k = 0.

Extensions

a(15)-a(21) from Donovan Johnson, Jun 21 2010
a(22)-a(25) from Amiram Eldar, Jan 18 2024

A001158 sigma_3(n): sum of cubes of divisors of n.

Original entry on oeis.org

1, 9, 28, 73, 126, 252, 344, 585, 757, 1134, 1332, 2044, 2198, 3096, 3528, 4681, 4914, 6813, 6860, 9198, 9632, 11988, 12168, 16380, 15751, 19782, 20440, 25112, 24390, 31752, 29792, 37449, 37296, 44226, 43344, 55261, 50654, 61740, 61544, 73710, 68922, 86688
Offset: 1

Views

Author

Keywords

Comments

If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6..24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Also the eigenvalues of the Hecke operator T_n for the entire modular normalized Eisenstein form E_4(z) (see A004009): T_n E_4 = a(n) E_4, n >= 1. For the Hecke operator T_n and eigenforms see, e.g., the Koecher-Krieg reference, p. 207, eq. (5) and p. 211, section 4, or the Apostol reference p. 120, eq. (13) and pp. 129 - 133. - Wolfdieter Lang, Jan 28 2016

Examples

			G.f. = x + 9*x^2 + 28*x^3 + 73*x^4 + 126*x^5 + 252*x^6 + 344*x^7 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 827.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 38.
  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 120, 129 - 133.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 166.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, pp. 207, 211.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Zagier, Don. "Elliptic modular forms and their applications." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 1-103. See p. 17, G_4(z).

Crossrefs

Cf. A004009, A064603 (partial sums).

Programs

  • Haskell
    a001158 n = product $ zipWith (\p e -> (p^(3*e + 3) - 1) `div` (p^3 - 1))
                          (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jun 30 2013
    
  • Magma
    [DivisorSigma(3,n): n in [1..40]]; // Bruno Berselli, Apr 10 2013
    
  • Maple
    seq(numtheory:-sigma[3](n),n=1..100); # Robert Israel, Feb 05 2016
  • Mathematica
    Table[DivisorSigma[3,n],{n,100}] (* corrected by T. D. Noe, Mar 22 2009 *)
  • Maxima
    makelist(divsum(n,3),n,1,100); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    N=99; q='q+O('q^N);
    Vec(sum(n=1,N,n^3*q^n/(1-q^n))) /* Joerg Arndt, Feb 04 2011 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, d^3))}; /* Michael Somos, Jan 07 2017 */
    
  • Python
    from sympy import divisor_sigma
    def a(n): return divisor_sigma(n, 3)
    print([a(n) for n in range(1, 43)]) # Michael S. Branicky, Jan 09 2021
  • Sage
    [sigma(n, 3) for n in range(1, 40)]  # Zerinvary Lajos, Jun 04 2009
    

Formula

Multiplicative with a(p^e) = (p^(3e+3)-1)/(p^3-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f. zeta(s)*zeta(s-3). - R. J. Mathar, Mar 04 2011
G.f.: sum(k>=1, k^3*x^k/(1-x^k)). - Benoit Cloitre, Apr 21 2003
Equals A051731 * [1, 8, 27, 64, 125, ...] = A127093 * [1, 4, 9, 16, 25, ...]. - Gary W. Adamson, Nov 02 2007
L.g.f.: -log(Product_{j>=1} (1-x^j)^(j^2)) = (1/1)*z^1 + (9/2)*z^2 + (28/3)*z^3 + (73/4)*z^4 + ... + (a(n)/n)*z^n + ... - Joerg Arndt, Feb 04 2011
a(n) = Sum{d|n} tau_{-2}^d*J_3(n/d), where tau_{-2} is A007427 and J_3 is A059376. - Enrique Pérez Herrero, Jan 19 2013
a(n) = A004009(n)/240. - Artur Jasinski, Sep 06 2016. See, e.g., Hardy, p. 166, (10.5.6), with Q = E_4, and with present offset 0. - Wolfdieter Lang, Jan 31 2017
8*a(n) = sum of cubes of even divisors of 2*n. - Wolfdieter Lang, Jan 07 2017
G.f.: Sum_{n >= 1} x^n*(1 + 4*x^n + x^(2*n))/(1 - x^n)^4. - Peter Bala, Jan 11 2021
Faster converging g.f.: Sum_{n >= 1} q^(n^2)*( n^3 + ((n + 1)^3 - 3*n^3)*q^n + (4 - 6*n^2)*q^(2*n) + (3*n^3 - (n - 1)^3)*q^(3*n) - n^3*q^(4*n) )/(1 - q^n)^4 - apply the operator x*d/dx three times to equation 5 in Arndt and then set x = 1. - Peter Bala, Jan 21 2021
a(n) = Sum_{1 <= i, j, k <= n} tau(gcd(i, j, k, n)) = Sum_{d divides n} tau(d)* J_3(n/d), where the divisor function tau(n) = A000005(n) and the Jordan totient function J_3(n) = A059376(n). - Peter Bala, Jan 22 2024

A064602 Partial sums of A001157: Sum_{j=1..n} sigma_2(j).

Original entry on oeis.org

1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[2, #] &, 42] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    from math import isqrt
    def f(n): return n*(n+1)*(2*n+1)//6
    def a(n):
        s = isqrt(n)
        return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s)
    print([a(k) for k in range(1, 43)]) # Michael S. Branicky, Oct 01 2022 after Daniel Suteu

Formula

a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j).
a(n) = Sum_{i=1..n} i^2 * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
a(n) ~ zeta(3) * n^3 / 3. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..s} (A000330(floor(n/k)) + k^2*floor(n/k)) - s*A000330(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020

A318742 a(n) = Sum_{k=1..n} floor(n/k)^3.

Original entry on oeis.org

1, 9, 29, 74, 136, 254, 382, 596, 833, 1173, 1505, 2057, 2527, 3209, 3921, 4856, 5674, 6928, 7956, 9474, 10882, 12608, 14128, 16506, 18369, 20797, 23141, 26129, 28567, 32259, 35051, 38963, 42483, 46675, 50435, 55904, 59902, 65156, 70092, 76460
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^3:k in [1..n]]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^3, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 3*DivisorSigma[1, k] + 3*DivisorSigma[2, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^3); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318742(n): return -(s:=isqrt(n))**4 + sum((q:=n//k)*(3*k*(k-1)+q**2+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A006218(n) - 3*A024916(n) + 3*A064602(n).
a(n) ~ zeta(3) * n^3.
G.f.: (1/(1 - x)) * Sum_{k>=1} (3*k*(k - 1) + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A318743 a(n) = Sum_{k=1..n} floor(n/k)^4.

Original entry on oeis.org

1, 17, 83, 274, 644, 1396, 2502, 4388, 6919, 10743, 15385, 22407, 30233, 41209, 53853, 70650, 88636, 113308, 138654, 172332, 207984, 252416, 298002, 358654, 417873, 492065, 569061, 663427, 756053, 875541, 989063, 1130915, 1272967, 1441383, 1607147, 1817080
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^4:k in [1..n]]:n in [1..36]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^4, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[-DivisorSigma[0, k] + 4*DivisorSigma[1, k] - 6*DivisorSigma[2, k] + 4*DivisorSigma[3, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^4); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318743(n): return -(s:=isqrt(n))**5+sum((q:=n//k)*(k**4-(k-1)**4+q**3) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = -A006218(n) + 4*A024916(n) - 6*A064602(n) + 4*A064603(n).
a(n) ~ zeta(4) * n^4.
a(n) ~ Pi^4 * n^4 / 90.
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * (2*k^2 - 2*k + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A318744 a(n) = Sum_{k=1..n} floor(n/k)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3160, 8054, 17086, 33860, 60353, 103437, 164489, 257945, 380407, 556001, 779865, 1085840, 1457122, 1958008, 2544540, 3312306, 4205650, 5336264, 6618976, 8254674, 10059777, 12298021, 14792045, 17829881, 21130663, 25189011, 29518163, 34749419
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[n/k]^5, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 5*DivisorSigma[1, k] + 10*DivisorSigma[2, k] - 10*DivisorSigma[3, k] + 5*DivisorSigma[4, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^5); \\ Michel Marcus, Sep 03 2018
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 27 2021
    
  • Python
    from math import isqrt
    def A318744(n): return -(s:=isqrt(n))**6+sum((q:=n//k)*(k**5-(k-1)**5+q**4) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = A006218(n) - 5*A024916(n) + 10*A064602(n) - 10*A064603(n) + 5*A064604(n).
a(n) ~ zeta(5) * n^5.

A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 8, 8, 1, 10, 16, 15, 10, 1, 18, 38, 37, 21, 14, 1, 34, 100, 111, 63, 33, 16, 1, 66, 278, 373, 237, 113, 41, 20, 1, 130, 796, 1335, 999, 489, 163, 56, 23, 1, 258, 2318, 4957, 4461, 2393, 833, 248, 69, 27, 1, 514, 6820, 18831, 20583, 12513, 4795, 1418, 339, 87, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
   8,  15,   37,  111,   373,   1335,  ...
  10,  21,   63,  237,   999,   4461,  ...
  14,  33,  113,  489,  2393,  12513,  ...
		

Crossrefs

Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076.
Cf. A082771, A109974, A319194 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0)
    def A319649_gen(): # generator of terms
         return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A319649_list = list(islice(A319649_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} sigma_k(j).

A365439 a(n) = Sum_{k=1..n} binomial(floor(n/k)+4,5).

Original entry on oeis.org

1, 7, 23, 64, 135, 282, 493, 864, 1375, 2166, 3168, 4715, 6536, 9132, 12278, 16525, 21371, 27998, 35314, 44995, 55847, 69504, 84455, 103882, 124428, 150005, 177921, 212017, 247978, 292890, 339267, 395874, 455796, 526692, 600788, 691066, 782457, 891048, 1004814
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n\k+4, 5));
    
  • Python
    from math import isqrt, comb
    def A365439(n): return (-(s:=isqrt(n))**2*comb(s+4,4)+sum((q:=n//k)*(5*comb(k+3,4)+comb(q+4,4)) for k in range(1,s+1)))//5 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+3,4) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^5 = 1/(1-x) * Sum_{k>=1} binomial(k+3,4) * x^k/(1-x^k).
a(n) = (A064604(n)+6*A064603(n)+11*A064602(n)+6*A024916(n))/24. - Chai Wah Wu, Oct 26 2023

A366971 a(n) = Sum_{k=3..n} binomial(k,3) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 5, 15, 36, 71, 131, 216, 346, 511, 756, 1042, 1441, 1907, 2527, 3207, 4128, 5097, 6371, 7737, 9442, 11213, 13538, 15848, 18734, 21744, 25423, 29077, 33743, 38238, 43818, 49440, 56104, 62694, 70979, 78749, 88154, 97580, 108790, 119450, 132680, 145021, 159974
Offset: 1

Views

Author

Seiichi Manyama, Oct 30 2023

Keywords

Crossrefs

Partial sums of A363607.

Programs

  • PARI
    a(n) = sum(k=3, n, binomial(k, 3)*(n\k));
    
  • Python
    from math import isqrt, comb
    def A366971(n): return -comb((s:=isqrt(n))+1,4)*(s+1)+sum(comb((q:=n//w)+1,4)+(q+1)*comb(w,3) for w in range(1,s+1)) # Chai Wah Wu, Oct 30 2023

Formula

G.f.: 1/(1-x) * Sum_{k>=1} x^(3*k)/(1-x^k)^4 = 1/(1-x) * Sum_{k>=3} binomial(k,3) * x^k/(1-x^k).
a(n) = (A064603(n) - 3*A064602(n) + 2*A024916(n))/6. - Chai Wah Wu, Oct 30 2023

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018
Showing 1-10 of 18 results. Next