cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A222548 a(n) = Sum_{k=1..n} floor(n/k)^2.

Original entry on oeis.org

1, 5, 11, 22, 32, 52, 66, 92, 115, 147, 169, 219, 245, 289, 333, 390, 424, 496, 534, 612, 672, 740, 786, 898, 957, 1037, 1113, 1219, 1277, 1413, 1475, 1595, 1687, 1791, 1883, 2056, 2130, 2246, 2354, 2526, 2608, 2792, 2878, 3040, 3190, 3330, 3424, 3662, 3773
Offset: 1

Views

Author

Benoit Cloitre, Feb 24 2013

Keywords

Comments

a(n) is the number of common divisors of integers 1<=i,j<=n over all ordered pairs (i,j). - Geoffrey Critzer, Jan 15 2015

References

  • J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 98.

Crossrefs

Similar sequences for Sum_{k=1..n} floor(n/k)^m: A006218 (m=1), this sequence (m=2), A318742 (m=3), A318743 (m=4), A318744 (m=5).

Programs

  • Magma
    [&+[Floor(n/k)^2:k in [1..n] ]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^2, {k, n}], {n, 50}] (* T. D. Noe, Feb 26 2013 *)
    Table[nn = n;Total[Level[Table[Table[DivisorSigma[0, GCD[i, j]], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 49}] (* Geoffrey Critzer, Jan 15 2015 *)
    Table[Sum[2*DivisorSigma[1, k] - DivisorSigma[0, k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Sep 02 2018 *)
  • PARI
    a(n)=sum(k=1,n,(n\k)^2)
    
  • Python
    from math import isqrt
    def A222548(n): return -(s:=isqrt(n))**3 + sum((q:=n//k)*((k<<1)+q-1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = zeta(2)*n^2 + O(n log n).
a(n) = 2*A024916(n) - A006218(n). - Vaclav Kotesovec, Sep 02 2018
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019
a(n) = Sum_{d=1..n} (2*d-1)*floor(n/d). [Uspensky and Heaslet] - Michael Somos, Feb 16 2020
a(n) = Sum_{k=1..n} Sum_{d|k} floor(n/d). - Ridouane Oudra, Jul 16 2020
a(n) = Sum_{i=1..n} Sum_{j=1..n} tau(gcd(i,j)). - Ridouane Oudra, Nov 23 2021

A318742 a(n) = Sum_{k=1..n} floor(n/k)^3.

Original entry on oeis.org

1, 9, 29, 74, 136, 254, 382, 596, 833, 1173, 1505, 2057, 2527, 3209, 3921, 4856, 5674, 6928, 7956, 9474, 10882, 12608, 14128, 16506, 18369, 20797, 23141, 26129, 28567, 32259, 35051, 38963, 42483, 46675, 50435, 55904, 59902, 65156, 70092, 76460
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^3:k in [1..n]]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^3, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 3*DivisorSigma[1, k] + 3*DivisorSigma[2, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^3); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318742(n): return -(s:=isqrt(n))**4 + sum((q:=n//k)*(3*k*(k-1)+q**2+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A006218(n) - 3*A024916(n) + 3*A064602(n).
a(n) ~ zeta(3) * n^3.
G.f.: (1/(1 - x)) * Sum_{k>=1} (3*k*(k - 1) + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A332469 a(n) = Sum_{k=1..n} floor(n/k)^n.

Original entry on oeis.org

1, 5, 29, 274, 3160, 47452, 825862, 16843268, 387702833, 10009826727, 285360679985, 8918294547447, 302888236005847, 11112685321898449, 437898668488710801, 18447025705612363530, 827242514466399305122, 39346558271561286347116, 1978421007121668206129316
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 13 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
    
  • Mathematica
    Table[Sum[Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
    Table[SeriesCoefficient[1/(1 - x) Sum[(k^n - (k - 1)^n) x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 1, 19}]
  • PARI
    a(n)={sum(k=1, n, floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
    
  • Python
    from math import isqrt
    def A332469(n): return -(s:=isqrt(n))**(n+1)+sum((q:=n//k)*(k**n-(k-1)**n+q**(n-1)) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} (k^n - (k - 1)^n) * x^k / (1 - x^k).
a(n) ~ n^n. - Vaclav Kotesovec, Jun 11 2021

A318743 a(n) = Sum_{k=1..n} floor(n/k)^4.

Original entry on oeis.org

1, 17, 83, 274, 644, 1396, 2502, 4388, 6919, 10743, 15385, 22407, 30233, 41209, 53853, 70650, 88636, 113308, 138654, 172332, 207984, 252416, 298002, 358654, 417873, 492065, 569061, 663427, 756053, 875541, 989063, 1130915, 1272967, 1441383, 1607147, 1817080
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^4:k in [1..n]]:n in [1..36]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^4, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[-DivisorSigma[0, k] + 4*DivisorSigma[1, k] - 6*DivisorSigma[2, k] + 4*DivisorSigma[3, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^4); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318743(n): return -(s:=isqrt(n))**5+sum((q:=n//k)*(k**4-(k-1)**4+q**3) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = -A006218(n) + 4*A024916(n) - 6*A064602(n) + 4*A064603(n).
a(n) ~ zeta(4) * n^4.
a(n) ~ Pi^4 * n^4 / 90.
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * (2*k^2 - 2*k + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A344725 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/j)^k.

Original entry on oeis.org

1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 10, 1, 33, 83, 74, 32, 14, 1, 65, 245, 274, 136, 52, 16, 1, 129, 731, 1058, 644, 254, 66, 20, 1, 257, 2189, 4162, 3160, 1396, 382, 92, 23, 1, 513, 6563, 16514, 15692, 8054, 2502, 596, 115, 27, 1, 1025, 19685, 65794, 78256, 47452, 17086, 4388, 833, 147, 29
Offset: 1

Views

Author

Seiichi Manyama, May 27 2021

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,    1,     1, ...
   3,  5,   9,   17,   33,    65, ...
   5, 11,  29,   83,  245,   731, ...
   8, 22,  74,  274, 1058,  4162, ...
  10, 32, 136,  644, 3160, 15692, ...
  14, 52, 254, 1396, 8054, 47452, ...
		

Crossrefs

Columns k=1..5 give A006218, A222548, A318742, A318743, A318744.
T(n,n) gives A332469.

Programs

  • Mathematica
    T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, (n\j)^k);
    
  • PARI
    T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A344725_T(n,k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1,s+1))
    def A344725_gen(): # generator of terms
         return (A344725_T(k+1,n-k) for n in count(1) for k in range(n))
    A344725_list = list(islice(A344725_gen(),30)) # Chai Wah Wu, Oct 26 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j).
T(n,k) = Sum_{j=1..n} Sum_{d|j} d^k - (d - 1)^k.

A344723 a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^5.

Original entry on oeis.org

1, 31, 243, 992, 3094, 7564, 16596, 31744, 58237, 97117, 158169, 241837, 364299, 521829, 745693, 1018120, 1389402, 1837302, 2423834, 3105432, 3998776, 5007286, 6289998, 7738784, 9543887, 11537207, 14031231, 16717879, 20018661, 23629281, 27958433, 32577739, 38219963, 44148743
Offset: 1

Views

Author

Seiichi Manyama, May 27 2021

Keywords

Comments

In general, for m > 1, Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^m ~ (1 - 2^(1-m)) * zeta(m) * n^m. - Vaclav Kotesovec, May 28 2021

Crossrefs

Column k=5 of A344726.
Cf. A318744.

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^5, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
    Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 10*DivisorSigma[1, n] - 5*DivisorSigma[1, 2*n] - 15*DivisorSigma[2, n] + 5*DivisorSigma[2, 2*n] + 25/2 * DivisorSigma[3, n] - 5/2 * DivisorSigma[3, 2*n] - 45/8 *DivisorSigma[4, n] + 5/8 * DivisorSigma[4, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
  • PARI
    a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^5);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^5-(d-1)^5)));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1+x^k))/(1-x))

Formula

a(n) = Sum_{k=1,..n} Sum_{d|k} (-1)^(k/d + 1) * (d^5 - (d - 1)^5).
G.f.: (1/(1 - x)) * Sum_{k>=1} (k^5 - (k - 1)^5) * x^k/(1 + x^k).
a(n) ~ 15*zeta(5)*n^5/16. - Vaclav Kotesovec, May 28 2021
Showing 1-6 of 6 results.