A222548
a(n) = Sum_{k=1..n} floor(n/k)^2.
Original entry on oeis.org
1, 5, 11, 22, 32, 52, 66, 92, 115, 147, 169, 219, 245, 289, 333, 390, 424, 496, 534, 612, 672, 740, 786, 898, 957, 1037, 1113, 1219, 1277, 1413, 1475, 1595, 1687, 1791, 1883, 2056, 2130, 2246, 2354, 2526, 2608, 2792, 2878, 3040, 3190, 3330, 3424, 3662, 3773
Offset: 1
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 98.
-
[&+[Floor(n/k)^2:k in [1..n] ]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
-
Table[Sum[Floor[n/k]^2, {k, n}], {n, 50}] (* T. D. Noe, Feb 26 2013 *)
Table[nn = n;Total[Level[Table[Table[DivisorSigma[0, GCD[i, j]], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 49}] (* Geoffrey Critzer, Jan 15 2015 *)
Table[Sum[2*DivisorSigma[1, k] - DivisorSigma[0, k], {k, 1, n}], {n, 1, 50}] (* Vaclav Kotesovec, Sep 02 2018 *)
-
a(n)=sum(k=1,n,(n\k)^2)
-
from math import isqrt
def A222548(n): return -(s:=isqrt(n))**3 + sum((q:=n//k)*((k<<1)+q-1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023
A332469
a(n) = Sum_{k=1..n} floor(n/k)^n.
Original entry on oeis.org
1, 5, 29, 274, 3160, 47452, 825862, 16843268, 387702833, 10009826727, 285360679985, 8918294547447, 302888236005847, 11112685321898449, 437898668488710801, 18447025705612363530, 827242514466399305122, 39346558271561286347116, 1978421007121668206129316
Offset: 1
-
[&+[Floor(n/k)^n:k in [1..n]]:n in [1..20]]; // Marius A. Burtea, Feb 13 2020
-
Table[Sum[Floor[n/k]^n, {k, 1, n}], {n, 1, 19}]
Table[SeriesCoefficient[1/(1 - x) Sum[(k^n - (k - 1)^n) x^k/(1 - x^k), {k, 1, n}], {x, 0, n}], {n, 1, 19}]
-
a(n)={sum(k=1, n, floor(n/k)^n)} \\ Andrew Howroyd, Feb 13 2020
-
from math import isqrt
def A332469(n): return -(s:=isqrt(n))**(n+1)+sum((q:=n//k)*(k**n-(k-1)**n+q**(n-1)) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023
A318743
a(n) = Sum_{k=1..n} floor(n/k)^4.
Original entry on oeis.org
1, 17, 83, 274, 644, 1396, 2502, 4388, 6919, 10743, 15385, 22407, 30233, 41209, 53853, 70650, 88636, 113308, 138654, 172332, 207984, 252416, 298002, 358654, 417873, 492065, 569061, 663427, 756053, 875541, 989063, 1130915, 1272967, 1441383, 1607147, 1817080
Offset: 1
-
[&+[Floor(n/k)^4:k in [1..n]]:n in [1..36]]; // Marius A. Burtea, Jul 16 2019
-
Table[Sum[Floor[n/k]^4, {k, 1, n}], {n, 1, 40}]
Accumulate[Table[-DivisorSigma[0, k] + 4*DivisorSigma[1, k] - 6*DivisorSigma[2, k] + 4*DivisorSigma[3, k], {k, 1, 40}]]
-
a(n) = sum(k=1, n, (n\k)^4); \\ Michel Marcus, Sep 03 2018
-
from math import isqrt
def A318743(n): return -(s:=isqrt(n))**5+sum((q:=n//k)*(k**4-(k-1)**4+q**3) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023
A318744
a(n) = Sum_{k=1..n} floor(n/k)^5.
Original entry on oeis.org
1, 33, 245, 1058, 3160, 8054, 17086, 33860, 60353, 103437, 164489, 257945, 380407, 556001, 779865, 1085840, 1457122, 1958008, 2544540, 3312306, 4205650, 5336264, 6618976, 8254674, 10059777, 12298021, 14792045, 17829881, 21130663, 25189011, 29518163, 34749419
Offset: 1
-
Table[Sum[Floor[n/k]^5, {k, 1, n}], {n, 1, 40}]
Accumulate[Table[DivisorSigma[0, k] - 5*DivisorSigma[1, k] + 10*DivisorSigma[2, k] - 10*DivisorSigma[3, k] + 5*DivisorSigma[4, k], {k, 1, 40}]]
-
a(n) = sum(k=1, n, (n\k)^5); \\ Michel Marcus, Sep 03 2018
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 27 2021
-
from math import isqrt
def A318744(n): return -(s:=isqrt(n))**6+sum((q:=n//k)*(k**5-(k-1)**5+q**4) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023
A344725
Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} floor(n/j)^k.
Original entry on oeis.org
1, 1, 3, 1, 5, 5, 1, 9, 11, 8, 1, 17, 29, 22, 10, 1, 33, 83, 74, 32, 14, 1, 65, 245, 274, 136, 52, 16, 1, 129, 731, 1058, 644, 254, 66, 20, 1, 257, 2189, 4162, 3160, 1396, 382, 92, 23, 1, 513, 6563, 16514, 15692, 8054, 2502, 596, 115, 27, 1, 1025, 19685, 65794, 78256, 47452, 17086, 4388, 833, 147, 29
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
3, 5, 9, 17, 33, 65, ...
5, 11, 29, 83, 245, 731, ...
8, 22, 74, 274, 1058, 4162, ...
10, 32, 136, 644, 3160, 15692, ...
14, 52, 254, 1396, 8054, 47452, ...
-
T[n_, k_] := Sum[Quotient[n, j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 10}, {k, 1, n}] // Flatten (* Amiram Eldar, May 27 2021 *)
-
T(n, k) = sum(j=1, n, (n\j)^k);
-
T(n, k) = sum(j=1, n, sumdiv(j, d, d^k-(d-1)^k));
-
from math import isqrt
from itertools import count, islice
def A344725_T(n,k): return -(s:=isqrt(n))**(k+1)+sum((q:=n//w)*(w**k-(w-1)**k+q**(k-1)) for w in range(1,s+1))
def A344725_gen(): # generator of terms
return (A344725_T(k+1,n-k) for n in count(1) for k in range(n))
A344725_list = list(islice(A344725_gen(),30)) # Chai Wah Wu, Oct 26 2023
A344721
a(n) = Sum_{k=1..n} (-1)^(k+1) * floor(n/k)^3.
Original entry on oeis.org
1, 7, 27, 56, 118, 196, 324, 448, 685, 901, 1233, 1549, 2019, 2445, 3157, 3664, 4482, 5262, 6290, 7128, 8536, 9598, 11118, 12392, 14255, 15743, 18087, 19711, 22149, 24417, 27209, 29251, 32771, 35327, 39087, 42048, 46046, 49244, 54180, 57512, 62434, 66838, 72258, 76246
Offset: 1
-
a[n_] := Sum[(-1)^(k + 1) * Quotient[n, k]^3, {k, 1, n}]; Array[a, 50] (* Amiram Eldar, May 27 2021 *)
Accumulate[Table[-3*DivisorSigma[0, n] + 2*DivisorSigma[0, 2*n] + 6*DivisorSigma[1, n] - 3*DivisorSigma[1, 2*n] - 9/2 * DivisorSigma[2, n] + 3/2 * DivisorSigma[2, 2*n], {n, 1, 50}]] (* Vaclav Kotesovec, May 28 2021 *)
-
a(n) = sum(k=1, n, (-1)^(k+1)*(n\k)^3);
-
a(n) = sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1)*(d^3-(d-1)^3)));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1+x^k))/(1-x))
A350108
a(n) = Sum_{k=1..n} k * floor(n/k)^3.
Original entry on oeis.org
1, 10, 32, 87, 153, 309, 443, 722, 1005, 1443, 1785, 2605, 3087, 3951, 4875, 6154, 6988, 8809, 9855, 12057, 13853, 16001, 17543, 21347, 23478, 26484, 29440, 33696, 36162, 41994, 44816, 50351, 54755, 59909, 64577, 73524, 77558, 84002, 90142, 100072, 105034
Offset: 1
-
a[n_] := Sum[k * Floor[n/k]^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Dec 14 2021 *)
Accumulate[Table[(1 + 3*k)*DivisorSigma[1, k] - 3*k*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *)
-
a(n) = sum(k=1, n, k*(n\k)^3);
-
a(n) = sum(k=1, n, k*sumdiv(k, d, (d^3-(d-1)^3)/d));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^k)^2)/(1-x))
-
from math import isqrt
def A350108(n): return -(s:=isqrt(n))**4*(s+1)+sum((q:=n//k)*(k**2*(3*(q+1))+k*(q*((q<<1)-3)-3)+q+1) for k in range(1,s+1))>>1 # Chai Wah Wu, Oct 31 2023
A350124
a(n) = Sum_{k=1..n} k^2 * floor(n/k)^3.
Original entry on oeis.org
1, 12, 40, 121, 207, 473, 649, 1142, 1611, 2401, 2853, 4647, 5285, 6879, 8759, 11452, 12558, 16739, 18127, 23353, 27129, 31171, 33219, 43573, 47524, 53210, 59538, 69996, 73274, 89694, 93446, 107195, 116731, 126545, 137505, 164580, 169946, 182244, 195644, 225454
Offset: 1
-
Accumulate[Table[DivisorSigma[2, k] - 3*k*DivisorSigma[1, k] + 3*k^2*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 17 2021 *)
-
a(n) = sum(k=1, n, k^2*(n\k)^3);
-
a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d^3-(d-1)^3)/d^2));
-
my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+x^k)/(1-x^k)^3)/(1-x))
-
from math import isqrt
def A350124(n): return (-(s:=isqrt(n))**4*(s+1)*(2*s+1) + sum((q:=n//k)*(k*(3*(k-1))+q*(k*(9*(k-1))+q*(k*(12*k-6)+2)+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023
A356249
a(n) = Sum_{k=1..n} (k * floor(n/k))^3.
Original entry on oeis.org
1, 16, 62, 219, 405, 1053, 1523, 2948, 4407, 7041, 8703, 15283, 17949, 24657, 32685, 44806, 50536, 70687, 78573, 105411, 125879, 149879, 163565, 222425, 247476, 286134, 327634, 396258, 423084, 532236, 564818, 664763, 738095, 821693, 904937, 1107618, 1162268, 1277588, 1395760
Offset: 1
-
a[n_] := Sum[(k * Floor[n/k])^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Jul 31 2022 *)
-
a(n) = sum(k=1, n, (k*(n\k))^3);
-
a(n) = sum(k=1, n, k^3*sumdiv(k, d, 1-(1-1/d)^3));
-
my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k*(1+4*x^k+x^(2*k))/(1-x^k)^4)/(1-x))
-
from math import isqrt
def A356249(n): return -(s:=isqrt(n))**5*(s+1)**2 + sum((q:=n//k)**2*(k*(3*(k-1))+q*(k*(k*(4*k+6)-6)+q*(k*(3*(k-1))+1)+2)+1) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 21 2023
A358877
Triangle read by rows: T(n,k) is the number of cubes of side length k that can be placed inside a cube of side length n without overlap, 1 <= k <= n.
Original entry on oeis.org
1, 8, 1, 27, 1, 1, 64, 8, 1, 1, 125, 8, 1, 1, 1, 216, 27, 8, 1, 1, 1, 343, 27, 8, 1, 1, 1, 1, 512, 64, 8, 8, 1, 1, 1, 1, 729, 64, 27, 8, 1, 1, 1, 1, 1, 1000, 125, 27, 8, 8, 1, 1, 1, 1, 1, 1331, 125, 27, 8, 8, 1, 1, 1, 1, 1, 1, 1728, 216, 64, 27, 8, 8, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
8, 1;
27, 1, 1;
64, 8, 1, 1;
125, 8, 1, 1, 1;
216, 27, 8, 1, 1, 1;
343, 27, 8, 1, 1, 1, 1;
512, 64, 8, 8, 1, 1, 1, 1;
729, 64, 27, 8, 1, 1, 1, 1, 1;
1000, 125, 27, 8, 8, 1, 1, 1, 1, 1;
1331, 125, 27, 8, 8, 1, 1, 1, 1, 1, 1;
1728, 216, 64, 27, 8, 8, 1, 1, 1, 1, 1, 1;
...
Showing 1-10 of 10 results.
Comments