A364970
a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3).
Original entry on oeis.org
1, 5, 12, 26, 42, 73, 102, 152, 204, 278, 345, 464, 556, 693, 835, 1021, 1175, 1422, 1613, 1907, 2173, 2496, 2773, 3228, 3569, 4015, 4445, 4998, 5434, 6120, 6617, 7331, 7965, 8717, 9391, 10392, 11096, 12031, 12909, 14059, 14921, 16219, 17166, 18489, 19711, 21072, 22201
Offset: 1
-
Table[Sum[Binomial[Floor[n/k+2],3],{k,n}],{n,50}] (* Harvey P. Dale, Aug 04 2024 *)
-
a(n) = sum(k=1, n, binomial(n\k+2, 3));
-
from math import isqrt
def A364970(n): return (-(s:=isqrt(n))**2*(s+1)*(s+2)+sum((q:=n//k)*(3*k*(k+1)+(q+1)*(q+2)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 26 2023
A365409
a(n) = Sum_{k=1..n} binomial(floor(n/k)+3,4).
Original entry on oeis.org
1, 6, 17, 42, 78, 149, 234, 379, 555, 815, 1102, 1557, 2013, 2662, 3388, 4349, 5319, 6695, 8026, 9846, 11712, 14027, 16328, 19503, 22464, 26200, 30030, 34759, 39255, 45221, 50678, 57623, 64465, 72579, 80469, 90665, 99805, 111020, 122146, 135566, 147908, 163638
Offset: 1
-
a(n) = sum(k=1, n, binomial(n\k+3, 4));
-
from math import isqrt, comb
def A365409(n): return -(s:=isqrt(n))**2*comb(s+3,3)+sum((q:=n//k)*((comb(k+2,3)<<2)+comb(q+3,3)) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 26 2023
A366723
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(floor(n/k)+4,5).
Original entry on oeis.org
1, 5, 21, 50, 121, 236, 447, 736, 1247, 1896, 2898, 4151, 5972, 8146, 11292, 14797, 19643, 25248, 32564, 40663, 51515, 63168, 78119, 94452, 114998, 136933, 164849, 193753, 229714, 268334, 314711, 362824, 422746, 483950, 558046, 635070, 726461, 820420, 934186, 1048245
Offset: 1
A366939
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+3,4) * floor(n/k).
Original entry on oeis.org
1, -3, 13, -26, 45, -70, 141, -228, 283, -366, 636, -879, 942, -1232, 1914, -2331, 2515, -3090, 4226, -5313, 5539, -6114, 8837, -10558, 9988, -11947, 15969, -17705, 18256, -20364, 26013, -30592, 29330, -31874, 42222, -47034, 44357, -49602, 64164, -69115, 66637, -74017
Offset: 1
-
a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+3, 4)*(n\k));
-
from math import isqrt
from sympy import rf
def A366939(n): return ((rf(s:=isqrt(m:=n>>1),3)*(s+1)*((s**2<<2)+13*s+8)<<3)-rf(t:=isqrt(n),5)*(t+1)+sum((((q:=m//w)+1)*(-q*(q+2)*((q**2<<2)+13*q+8)-5*w*(w+1)*((r:=w<<1)+1)*(r+3))<<3) for w in range(1,s+1))+sum(rf(q:=n//w,5)+5*(q+1)*rf(w,4) for w in range(1,t+1)))//120 # Chai Wah Wu, Oct 29 2023
A366977
Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1).
Original entry on oeis.org
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 10, 1, 7, 17, 26, 21, 14, 1, 8, 23, 42, 42, 33, 16, 1, 9, 30, 64, 78, 73, 41, 20, 1, 10, 38, 93, 135, 149, 102, 56, 23, 1, 11, 47, 130, 220, 282, 234, 152, 69, 27, 1, 12, 57, 176, 341, 500, 493, 379, 204, 87, 29
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
5, 8, 12, 17, 23, 30, 38, 47, 57, 68, ...
8, 15, 26, 42, 64, 93, 130, 176, 232, 299, ...
10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, ...
14, 33, 73, 149, 282, 500, 839, 1344, 2070, 3083, ...
16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ...
-
from math import isqrt, comb
def A366977_T(n,k): return (-(s:=isqrt(n))**2*comb(s+k,k)+sum((q:=n//j)*((k+1)*comb(j+k-1,k)+comb(q+k,k)) for j in range(1,s+1)))//(k+1)
def A366977_gen(): # generator of terms
return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n))
A366977_list = list(islice(A366977_gen(),30))
Showing 1-5 of 5 results.