A364970
a(n) = Sum_{k=1..n} binomial(floor(n/k)+2,3).
Original entry on oeis.org
1, 5, 12, 26, 42, 73, 102, 152, 204, 278, 345, 464, 556, 693, 835, 1021, 1175, 1422, 1613, 1907, 2173, 2496, 2773, 3228, 3569, 4015, 4445, 4998, 5434, 6120, 6617, 7331, 7965, 8717, 9391, 10392, 11096, 12031, 12909, 14059, 14921, 16219, 17166, 18489, 19711, 21072, 22201
Offset: 1
-
Table[Sum[Binomial[Floor[n/k+2],3],{k,n}],{n,50}] (* Harvey P. Dale, Aug 04 2024 *)
-
a(n) = sum(k=1, n, binomial(n\k+2, 3));
-
from math import isqrt
def A364970(n): return (-(s:=isqrt(n))**2*(s+1)*(s+2)+sum((q:=n//k)*(3*k*(k+1)+(q+1)*(q+2)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 26 2023
A365439
a(n) = Sum_{k=1..n} binomial(floor(n/k)+4,5).
Original entry on oeis.org
1, 7, 23, 64, 135, 282, 493, 864, 1375, 2166, 3168, 4715, 6536, 9132, 12278, 16525, 21371, 27998, 35314, 44995, 55847, 69504, 84455, 103882, 124428, 150005, 177921, 212017, 247978, 292890, 339267, 395874, 455796, 526692, 600788, 691066, 782457, 891048, 1004814
Offset: 1
-
a(n) = sum(k=1, n, binomial(n\k+4, 5));
-
from math import isqrt, comb
def A365439(n): return (-(s:=isqrt(n))**2*comb(s+4,4)+sum((q:=n//k)*(5*comb(k+3,4)+comb(q+4,4)) for k in range(1,s+1)))//5 # Chai Wah Wu, Oct 26 2023
A366938
a(n) = Sum_{k=1..n} (-1)^(k-1) * binomial(k+2,3) * floor(n/k).
Original entry on oeis.org
1, -2, 9, -14, 22, -27, 58, -85, 91, -97, 190, -243, 213, -266, 460, -499, 471, -553, 778, -970, 896, -845, 1456, -1697, 1264, -1560, 2270, -2289, 2207, -2307, 3150, -3793, 3049, -3125, 4765, -5079, 4061, -4492, 6634, -6714, 5628, -6370, 7821, -9120, 7986, -7013
Offset: 1
-
a(n) = sum(k=1, n, (-1)^(k-1)*binomial(k+2, 3)*(n\k));
-
from math import isqrt
def A366938(n): return (((s:=isqrt(m:=n>>1))*(s+1)**3*(s+2)<<4)-(t:=isqrt(n))*(t+1)**2*(t+2)*(t+3)-sum((((q:=m//w)+1)*(q*(q+1)*(q+2)+(w*(w+1)*((w<<1)+1)<<1))<<4) for w in range(1,s+1))+sum(((q:=n//w)+1)*(q*(q+2)*(q+3)+(w*(w+1)*(w+2)<<2)) for w in range(1,t+1)))//24 # Chai Wah Wu, Oct 29 2023
A366977
Array T(n,k), n >= 1, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} binomial(floor(n/j)+k,k+1).
Original entry on oeis.org
1, 1, 3, 1, 4, 5, 1, 5, 8, 8, 1, 6, 12, 15, 10, 1, 7, 17, 26, 21, 14, 1, 8, 23, 42, 42, 33, 16, 1, 9, 30, 64, 78, 73, 41, 20, 1, 10, 38, 93, 135, 149, 102, 56, 23, 1, 11, 47, 130, 220, 282, 234, 152, 69, 27, 1, 12, 57, 176, 341, 500, 493, 379, 204, 87, 29
Offset: 1
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
5, 8, 12, 17, 23, 30, 38, 47, 57, 68, ...
8, 15, 26, 42, 64, 93, 130, 176, 232, 299, ...
10, 21, 42, 78, 135, 220, 341, 507, 728, 1015, ...
14, 33, 73, 149, 282, 500, 839, 1344, 2070, 3083, ...
16, 41, 102, 234, 493, 963, 1764, 3061, 5074, 8089, ...
-
from math import isqrt, comb
def A366977_T(n,k): return (-(s:=isqrt(n))**2*comb(s+k,k)+sum((q:=n//j)*((k+1)*comb(j+k-1,k)+comb(q+k,k)) for j in range(1,s+1)))//(k+1)
def A366977_gen(): # generator of terms
return (A366977_T(k+1, n-k-1) for n in count(1) for k in range(n))
A366977_list = list(islice(A366977_gen(),30))
Showing 1-4 of 4 results.