cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064604 Partial sums of A001159: Sum_{j=1..n} sigma_4(j).

Original entry on oeis.org

1, 18, 100, 373, 999, 2393, 4795, 9164, 15807, 26449, 41091, 63477, 92039, 132873, 184205, 254110, 337632, 450563, 580885, 751783, 948747, 1197661, 1477503, 1835761, 2227012, 2712566, 3250650, 3906396, 4613678, 5486322, 6409844
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, Sum_{k=1..n} sigma_j(k) = Sum_{k=1..n} (Bernoulli(j+1, floor(1 + n/k)) - Bernoulli(j+1, 0))/(j+1), where Bernoulli(n,x) are the Bernoulli polynomials, for any positive integer j. - Daniel Suteu, Nov 07 2018

Crossrefs

Programs

  • Magma
    [(&+[DivisorSigma(4,j): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma[4],[$1..100])); # Robert Israel, Jun 29 2018
  • Mathematica
    Accumulate[DivisorSigma[4, Range[50]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    vector(50, n, sum(j=1, n, sigma(j,4))) \\ G. C. Greubel, Nov 07 2018
    
  • Python
    from math import isqrt
    def A064604(n): return (-(s:=isqrt(n))**2*(s**2*(s*(6*s+15)+10)-1) + sum((q:=n//k)*(30*k**4+q**2*(q*(6*q+15)+10)-1) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = a(n-1) + A001159(n) = Sum_{j=1..n} sigma_4(j), where sigma_4(j) = A001159(j).
G.f.: (1/(1 - x))*Sum_{k>=1} k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ zeta(5) * n^5 / 5. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} Bernoulli(5, floor(1 + n/k))/5, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^4 * floor(n/k). - Daniel Suteu, Nov 08 2018