A064604 Partial sums of A001159: Sum_{j=1..n} sigma_4(j).
1, 18, 100, 373, 999, 2393, 4795, 9164, 15807, 26449, 41091, 63477, 92039, 132873, 184205, 254110, 337632, 450563, 580885, 751783, 948747, 1197661, 1477503, 1835761, 2227012, 2712566, 3250650, 3906396, 4613678, 5486322, 6409844
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[(&+[DivisorSigma(4,j): j in [1..n]]): n in [1..50]]; // G. C. Greubel, Nov 07 2018
-
Maple
ListTools:-PartialSums(map(numtheory:-sigma[4],[$1..100])); # Robert Israel, Jun 29 2018
-
Mathematica
Accumulate[DivisorSigma[4, Range[50]]] (* Vaclav Kotesovec, Mar 30 2018 *)
-
PARI
vector(50, n, sum(j=1, n, sigma(j,4))) \\ G. C. Greubel, Nov 07 2018
-
Python
from math import isqrt def A064604(n): return (-(s:=isqrt(n))**2*(s**2*(s*(6*s+15)+10)-1) + sum((q:=n//k)*(30*k**4+q**2*(q*(6*q+15)+10)-1) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 21 2023
Formula
G.f.: (1/(1 - x))*Sum_{k>=1} k^4*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ zeta(5) * n^5 / 5. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} Bernoulli(5, floor(1 + n/k))/5, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^4 * floor(n/k). - Daniel Suteu, Nov 08 2018
Comments