cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A064607 Numbers k such that A064604(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 151, 257, 1823, 3048, 5588, 6875, 7201, 8973, 24099, 5249801, 9177919, 18926164, 70079434, 78647747, 705686794, 2530414370, 3557744074, 25364328389, 32487653727, 66843959963
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

Analogous sequences for various arithmetical functions are A050226, A056650, A064605-A064607, A064610, A064611, A048290, A062982, A045345.
a(19) > 2*10^9. - Donovan Johnson, Jun 21 2010
a(24) > 10^11, if it exists. - Amiram Eldar, Jan 18 2024

Examples

			Adding 4th-power divisor-sums for j = 1..7 gives 1+17+82+273+626+1394+2402 = 4795 which is divisible by 7, so 7 is a term and the integer quotient is 655.
		

Crossrefs

Programs

  • Mathematica
    k = 1; lst = {}; s = 0; While[k < 1000000001, s = s + DivisorSigma[4, k]; If[ Mod[s, k] == 0, AppendTo[lst, k]; Print@ k]; k++]; lst (* Robert G.Wilson v, Aug 25 2011 *)

Formula

(Sum_{j=1..k} sigma_4(j)) mod k = A064604(k) mod k = 0.

Extensions

a(13)-a(18) from Donovan Johnson, Jun 21 2010
a(19)-a(23) from Amiram Eldar, Jan 18 2024

A064602 Partial sums of A001157: Sum_{j=1..n} sigma_2(j).

Original entry on oeis.org

1, 6, 16, 37, 63, 113, 163, 248, 339, 469, 591, 801, 971, 1221, 1481, 1822, 2112, 2567, 2929, 3475, 3975, 4585, 5115, 5965, 6616, 7466, 8286, 9336, 10178, 11478, 12440, 13805, 15025, 16475, 17775, 19686, 21056, 22866, 24566, 26776, 28458, 30958
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, for m >= 0 and j >= 0, Sum_{k=1..n} k^m * sigma_j(k) = Sum_{k=1..s} (k^m * F_{m+j}(floor(n/k)) + k^(m+j) * F_m(floor(n/k))) - F_{m+j}(s) * F_m(s), where s = floor(sqrt(n)) and F_m(x) are the Faulhaber polynomials defined as F_m(x) = (Bernoulli(m+1, x+1) - Bernoulli(m+1, 1)) / (m+1). - Daniel Suteu, Nov 27 2020

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[2, #] &, 42] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 2)); \\ Michel Marcus, Dec 15 2013
    
  • PARI
    f(n) = n*(n+1)*(2*n+1)/6; \\ A000330
    a(n) = my(s=sqrtint(n)); sum(k=1, s, f(n\k) + k^2*(n\k)) - s*f(s); \\ Daniel Suteu, Nov 26 2020
    
  • Python
    from math import isqrt
    def f(n): return n*(n+1)*(2*n+1)//6
    def a(n):
        s = isqrt(n)
        return sum(f(n//k) + k*k*(n//k) for k in range(1, s+1)) - s*f(s)
    print([a(k) for k in range(1, 43)]) # Michael S. Branicky, Oct 01 2022 after Daniel Suteu

Formula

a(n) = a(n-1) + A001157(n) = Sum_{j=1..n} sigma_2(j) where sigma_2(j) = A001157(j).
a(n) = Sum_{i=1..n} i^2 * floor(n/i). - Enrique Pérez Herrero, Sep 15 2012
G.f.: (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 02 2017
a(n) ~ zeta(3) * n^3 / 3. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..s} (A000330(floor(n/k)) + k^2*floor(n/k)) - s*A000330(s), where s = floor(sqrt(n)). - Daniel Suteu, Nov 26 2020

A064603 Partial sums of A001158: Sum_{j=1..n} sigma_3(j).

Original entry on oeis.org

1, 10, 38, 111, 237, 489, 833, 1418, 2175, 3309, 4641, 6685, 8883, 11979, 15507, 20188, 25102, 31915, 38775, 47973, 57605, 69593, 81761, 98141, 113892, 133674, 154114, 179226, 203616, 235368, 265160, 302609, 339905, 384131, 427475, 482736
Offset: 1

Views

Author

Labos Elemer, Sep 24 2001

Keywords

Comments

In general, Sum_{k=1..n} sigma_m(k) = Sum_{k=1..n} k^m * floor(n/k). - Daniel Suteu, Nov 08 2018

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[DivisorSigma[3, #] &, 36] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    a(n) = sum(j=1, n, sigma(j, 3)); \\ Michel Marcus, Nov 04 2017
    
  • PARI
    a(n) = sum(k=1, n, k^3 * (n\k)); \\ Daniel Suteu, Nov 08 2018
    
  • Python
    from math import isqrt
    def A064603(n): return (-(s:=isqrt(n))**3*(s+1)**2 + sum((q:=n//k)*(4*k**3+q*(q*(q+2)+1)) for k in range(1,s+1)))>>2 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = a(n-1) + A001158(n) = Sum_{j=1..n} sigma_3(j), where sigma_3(j) = A001158(j).
G.f.: (1/(1 - x))*Sum_{k>=1} k^3*x^k/(1 - x^k). - Ilya Gutkovskiy, Jan 23 2017
a(n) ~ Pi^4 * n^4 / 360. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} ((1/2) * floor(n/k) * floor(1 + n/k))^2. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^3 * floor(n/k). - Daniel Suteu, Nov 08 2018

A318742 a(n) = Sum_{k=1..n} floor(n/k)^3.

Original entry on oeis.org

1, 9, 29, 74, 136, 254, 382, 596, 833, 1173, 1505, 2057, 2527, 3209, 3921, 4856, 5674, 6928, 7956, 9474, 10882, 12608, 14128, 16506, 18369, 20797, 23141, 26129, 28567, 32259, 35051, 38963, 42483, 46675, 50435, 55904, 59902, 65156, 70092, 76460
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^3:k in [1..n]]: n in [1..40]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^3, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 3*DivisorSigma[1, k] + 3*DivisorSigma[2, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^3); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318742(n): return -(s:=isqrt(n))**4 + sum((q:=n//k)*(3*k*(k-1)+q**2+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = A006218(n) - 3*A024916(n) + 3*A064602(n).
a(n) ~ zeta(3) * n^3.
G.f.: (1/(1 - x)) * Sum_{k>=1} (3*k*(k - 1) + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A318743 a(n) = Sum_{k=1..n} floor(n/k)^4.

Original entry on oeis.org

1, 17, 83, 274, 644, 1396, 2502, 4388, 6919, 10743, 15385, 22407, 30233, 41209, 53853, 70650, 88636, 113308, 138654, 172332, 207984, 252416, 298002, 358654, 417873, 492065, 569061, 663427, 756053, 875541, 989063, 1130915, 1272967, 1441383, 1607147, 1817080
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Magma
    [&+[Floor(n/k)^4:k in [1..n]]:n in [1..36]]; // Marius A. Burtea, Jul 16 2019
    
  • Mathematica
    Table[Sum[Floor[n/k]^4, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[-DivisorSigma[0, k] + 4*DivisorSigma[1, k] - 6*DivisorSigma[2, k] + 4*DivisorSigma[3, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^4); \\ Michel Marcus, Sep 03 2018
    
  • Python
    from math import isqrt
    def A318743(n): return -(s:=isqrt(n))**5+sum((q:=n//k)*(k**4-(k-1)**4+q**3) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = -A006218(n) + 4*A024916(n) - 6*A064602(n) + 4*A064603(n).
a(n) ~ zeta(4) * n^4.
a(n) ~ Pi^4 * n^4 / 90.
G.f.: (1/(1 - x)) * Sum_{k>=1} (2*k - 1) * (2*k^2 - 2*k + 1) * x^k/(1 - x^k). - Ilya Gutkovskiy, Jul 16 2019

A318744 a(n) = Sum_{k=1..n} floor(n/k)^5.

Original entry on oeis.org

1, 33, 245, 1058, 3160, 8054, 17086, 33860, 60353, 103437, 164489, 257945, 380407, 556001, 779865, 1085840, 1457122, 1958008, 2544540, 3312306, 4205650, 5336264, 6618976, 8254674, 10059777, 12298021, 14792045, 17829881, 21130663, 25189011, 29518163, 34749419
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[n/k]^5, {k, 1, n}], {n, 1, 40}]
    Accumulate[Table[DivisorSigma[0, k] - 5*DivisorSigma[1, k] + 10*DivisorSigma[2, k] - 10*DivisorSigma[3, k] + 5*DivisorSigma[4, k], {k, 1, 40}]]
  • PARI
    a(n) = sum(k=1, n, (n\k)^5); \\ Michel Marcus, Sep 03 2018
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (k^5-(k-1)^5)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, May 27 2021
    
  • Python
    from math import isqrt
    def A318744(n): return -(s:=isqrt(n))**6+sum((q:=n//k)*(k**5-(k-1)**5+q**4) for k in range(1,s+1)) # Chai Wah Wu, Oct 26 2023

Formula

a(n) = A006218(n) - 5*A024916(n) + 10*A064602(n) - 10*A064603(n) + 5*A064604(n).
a(n) ~ zeta(5) * n^5.

A319649 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{j=1..n} j^k * floor(n/j).

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 6, 8, 8, 1, 10, 16, 15, 10, 1, 18, 38, 37, 21, 14, 1, 34, 100, 111, 63, 33, 16, 1, 66, 278, 373, 237, 113, 41, 20, 1, 130, 796, 1335, 999, 489, 163, 56, 23, 1, 258, 2318, 4957, 4461, 2393, 833, 248, 69, 27, 1, 514, 6820, 18831, 20583, 12513, 4795, 1418, 339, 87, 29
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 09 2018

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,      1,  ...
   3,   4,    6,   10,    18,     34,  ...
   5,   8,   16,   38,   100,    278,  ...
   8,  15,   37,  111,   373,   1335,  ...
  10,  21,   63,  237,   999,   4461,  ...
  14,  33,  113,  489,  2393,  12513,  ...
		

Crossrefs

Columns k=0..5 give A006218, A024916, A064602, A064603, A064604, A248076.
Cf. A082771, A109974, A319194 (diagonal).

Programs

  • Mathematica
    Table[Function[k, Sum[j^k Floor[n/j] , {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[j^k x^j/(1 - x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, Sum[DivisorSigma[k, j], {j, 1, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import bernoulli
    def A319649_T(n,k): return (((s:=isqrt(n))+1)*(bernoulli(k+1)-bernoulli(k+1,s+1))+sum(w**k*(k+1)*((q:=n//w)+1)-bernoulli(k+1)+bernoulli(k+1,q+1) for w in range(1,s+1)))//(k+1) + int(k==0)
    def A319649_gen(): # generator of terms
         return (A319649_T(k+1,n-k-1) for n in count(1) for k in range(n))
    A319649_list = list(islice(A319649_gen(),30)) # Chai Wah Wu, Oct 24 2023

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} j^k*x^j/(1 - x^j).
A(n,k) = Sum_{j=1..n} sigma_k(j).

A365439 a(n) = Sum_{k=1..n} binomial(floor(n/k)+4,5).

Original entry on oeis.org

1, 7, 23, 64, 135, 282, 493, 864, 1375, 2166, 3168, 4715, 6536, 9132, 12278, 16525, 21371, 27998, 35314, 44995, 55847, 69504, 84455, 103882, 124428, 150005, 177921, 212017, 247978, 292890, 339267, 395874, 455796, 526692, 600788, 691066, 782457, 891048, 1004814
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n\k+4, 5));
    
  • Python
    from math import isqrt, comb
    def A365439(n): return (-(s:=isqrt(n))**2*comb(s+4,4)+sum((q:=n//k)*(5*comb(k+3,4)+comb(q+4,4)) for k in range(1,s+1)))//5 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+3,4) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^5 = 1/(1-x) * Sum_{k>=1} binomial(k+3,4) * x^k/(1-x^k).
a(n) = (A064604(n)+6*A064603(n)+11*A064602(n)+6*A024916(n))/24. - Chai Wah Wu, Oct 26 2023

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018

A355887 a(n) = Sum_{k=1..n} k^k * floor(n/k).

Original entry on oeis.org

1, 6, 34, 295, 3421, 50109, 873653, 17651130, 405071647, 10405074777, 295716745389, 9211817240589, 312086923832843, 11424093750214407, 449317984131076935, 18896062057857406028, 846136323944194170206, 40192544399241119212807
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^k);
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^d));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k))/(1-x))
    
  • Python
    def A355887(n): return n*(1+n**(n-1))+sum(k**k*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^d.
G.f.: (1/(1-x)) * Sum_{k>0} (k * x)^k/(1 - x^k).
Showing 1-10 of 10 results.