cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355950 a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).

Original entry on oeis.org

1, 4, 14, 81, 707, 8495, 126145, 2223364, 45270095, 1045270723, 26982695325, 769991073865, 24068076196347, 817782849568143, 30010708874959403, 1182932213483903598, 49844124089150772080, 2235755683827890358557, 106363105981739131891399
Offset: 1

Views

Author

Seiichi Manyama, Jul 21 2022

Keywords

Crossrefs

Partial sums of A262843.

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))
    
  • Python
    def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).
G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).

A356127 a(n) = Sum_{k=1..n} k^k * binomial(floor(n/k)+1,2).

Original entry on oeis.org

1, 7, 37, 305, 3435, 50163, 873713, 17651465, 405072044, 10405078324, 295716748946, 9211817291426, 312086923883692, 11424093751088836, 449317984131957736, 18896062057875064856, 846136323944211829050, 40192544399241524385636
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[k^k * Binomial[Floor[n/k] + 1, 2], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 28 2022*)
  • PARI
    a(n) = sum(k=1, n, k^k*binomial(n\k+1, 2));
    
  • PARI
    a(n) = sum(k=1, n, k*sumdiv(k, d, d^(d-1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x)^k/(1-x^k)^2)/(1-x))

Formula

a(n) = Sum_{k=1..n} k * Sum_{d|k} d^(d-1).
G.f.: (1/(1-x)) * Sum_{k>=1} (k * x)^k/(1 - x^k)^2.
Showing 1-2 of 2 results.