cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A236042 Primes p such that 100*p+1, 100*p+3, 100*p+7, and 100*p+9 are all prime.

Original entry on oeis.org

1657, 2437, 6073, 10687, 11677, 13297, 13399, 33289, 35869, 40927, 46093, 57601, 61933, 77743, 97927, 125119, 127447, 130411, 140827, 141397, 189229, 217207, 246439, 271573, 289987, 292867, 292969, 297469, 329803
Offset: 1

Views

Author

Derek Orr, Jan 18 2014

Keywords

Examples

			125119, 12511901, 12511903, 12511907, and 12511909 are all prime, thus 125119 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[30000]],AllTrue[100#+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Mar 05 2023 *)
  • Python
    import sympy
    from sympy import isprime
    {print(p) for p in range(10**6) if isprime(p) and isprime(100*p+1) and isprime(100*p+3) and isprime(100*p+7) and isprime(100*p+9)}

A064962 Numbers k such that 1000k+1, 1000k+3, 1000k+7, 1000k+9 are all primes.

Original entry on oeis.org

13, 1447, 2062, 5527, 6760, 8062, 11554, 11890, 14467, 23113, 23482, 24952, 25150, 28201, 28300, 31072, 31576, 36217, 41584, 41599, 45331, 50635, 56914, 66688, 67639, 69376, 75079, 80002, 81157, 82240, 84517, 88948, 90010, 90376, 91018
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], PrimeQ[1000# + 1] && PrimeQ[1000# + 3] && PrimeQ[1000# + 7] && PrimeQ[1000# + 9] &]
  • PARI
    { n=0; for (m=1, 10^9, if(isprime(1000*m + 1) && isprime(1000*m + 3) && isprime(1000*m + 7) && isprime(1000*m + 9), write("b064962.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 01 2009

A064963 10000n+1, 10000n+3, 10000n+7, 10000n+9 are all primes.

Original entry on oeis.org

676, 1189, 2515, 2830, 8224, 9001, 10621, 10786, 17611, 18640, 20983, 21277, 23419, 28468, 31450, 37720, 41530, 41596, 42025, 45238, 47212, 49912, 50992, 52222, 53815, 65827, 70786, 77044, 82324, 88297, 88918, 96193, 99262, 101992
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Cf. A007811 and A064687.

Programs

  • Mathematica
    Select[Range[10^5], PrimeQ[10^4# + 1] && PrimeQ[10^4# + 3] && PrimeQ[10^4# + 7] && PrimeQ[10^4# + 9] &]
    Select[Range[120000],AllTrue[10000#+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Mar 18 2022 *)

A064968 Numbers k such that 1000000000k+1, 1000000000k+3, 1000000000k+7, 1000000000k+9 are all primes.

Original entry on oeis.org

14965, 16813, 20767, 23083, 34270, 40198, 93238, 112096, 189802, 192484, 251248, 333946, 334969, 363514, 374107, 375127, 376765, 383473, 405046, 419458, 462928, 498139, 649948, 703246, 704374, 732463, 767101, 781885, 806467, 812902, 842428
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], PrimeQ[10^9# + 1] && PrimeQ[10^9# + 3] && PrimeQ[10^9# + 7] && PrimeQ[10^9# + 9] &]
  • PARI
    { n=0; for (m=1, 10^9, b=10^9*m; if(isprime(b + 1) && isprime(b + 3) && isprime(b + 7) && isprime(b + 9), write("b064968.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 01 2009

A064964 100000n+1, 100000n+3, 100000n+7, 100000n+9 are all primes.

Original entry on oeis.org

283, 1864, 3145, 3772, 4153, 11902, 18829, 27736, 28129, 33739, 36469, 40207, 47533, 55996, 60871, 63184, 63244, 80839, 91174, 92683, 93379, 103672, 107236, 117337, 117589, 136765, 143110, 146590, 161986, 183889, 189118, 206419, 207055
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Cf. A007811 and A064687.

Programs

  • Mathematica
    Select[Range[10^6/4], PrimeQ[10^5# + 1] && PrimeQ[10^5# + 3] && PrimeQ[10^5# + 7] && PrimeQ[10^5# + 9] &]

A064965 1000000n+1, 1000000n+3, 1000000n+7, 1000000n+9 are all primes.

Original entry on oeis.org

14311, 14659, 23299, 40861, 43303, 46405, 62239, 67327, 77071, 94237, 102796, 115201, 120220, 134968, 138721, 152980, 252715, 260947, 272365, 274534, 285244, 298342, 304489, 305713, 311032, 318802, 324025, 325321, 338908, 343885, 352621
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Cf. A007811 and A064687.

Programs

  • Mathematica
    Select[Range[10^6/2], PrimeQ[10^6# + 1] && PrimeQ[10^6# + 3] && PrimeQ[10^6# + 7] && PrimeQ[10^6# + 9] &]
    Select[Range[400000],AllTrue[10^6*#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2015 *)

A064966 Numbers n such that 10000000n+1, 10000000n+3, 10000000n+7, 10000000n+9 are all primes.

Original entry on oeis.org

12022, 15298, 44413, 61507, 72199, 87463, 96538, 108862, 112129, 117694, 122176, 125716, 175078, 185746, 201493, 227221, 250414, 267844, 273460, 371194, 387028, 391765, 397066, 397792, 454921, 581365, 601177, 621010, 642199, 659788, 677206
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Cf. A007811 and A064687.

Programs

  • Mathematica
    Select[Range[10^6/2], PrimeQ[10^7# + 1] && PrimeQ[10^7# + 3] && PrimeQ[10^7# + 7] && PrimeQ[10^7# + 9] &]
    Select[Range[678000],AllTrue[# 10^7+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Nov 13 2022 *)

A064967 100000000n+1, 100000000n+3, 100000000n+7, 100000000n+9 are all primes.

Original entry on oeis.org

27346, 62101, 149650, 168130, 207670, 230830, 242443, 249439, 257227, 278521, 300028, 329389, 342700, 401980, 436315, 452281, 456985, 523972, 528946, 530671, 535918, 612595, 642832, 657151, 732799, 733783, 746848, 758857, 857662, 866608
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Cf. A007811 and A064687.

Programs

  • Mathematica
    Select[Range[10^6], PrimeQ[10^8# + 1] && PrimeQ[10^8# + 3] && PrimeQ[10^8# + 7] && PrimeQ[10^8# + 9] &]
    Select[Range[900000],AllTrue[100000000#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 14 2016 *)
Showing 1-8 of 8 results.