A236042
Primes p such that 100*p+1, 100*p+3, 100*p+7, and 100*p+9 are all prime.
Original entry on oeis.org
1657, 2437, 6073, 10687, 11677, 13297, 13399, 33289, 35869, 40927, 46093, 57601, 61933, 77743, 97927, 125119, 127447, 130411, 140827, 141397, 189229, 217207, 246439, 271573, 289987, 292867, 292969, 297469, 329803
Offset: 1
125119, 12511901, 12511903, 12511907, and 12511909 are all prime, thus 125119 is a member of this sequence.
-
Select[Prime[Range[30000]],AllTrue[100#+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Mar 05 2023 *)
-
import sympy
from sympy import isprime
{print(p) for p in range(10**6) if isprime(p) and isprime(100*p+1) and isprime(100*p+3) and isprime(100*p+7) and isprime(100*p+9)}
A064962
Numbers k such that 1000k+1, 1000k+3, 1000k+7, 1000k+9 are all primes.
Original entry on oeis.org
13, 1447, 2062, 5527, 6760, 8062, 11554, 11890, 14467, 23113, 23482, 24952, 25150, 28201, 28300, 31072, 31576, 36217, 41584, 41599, 45331, 50635, 56914, 66688, 67639, 69376, 75079, 80002, 81157, 82240, 84517, 88948, 90010, 90376, 91018
Offset: 1
-
Select[Range[10^5], PrimeQ[1000# + 1] && PrimeQ[1000# + 3] && PrimeQ[1000# + 7] && PrimeQ[1000# + 9] &]
-
{ n=0; for (m=1, 10^9, if(isprime(1000*m + 1) && isprime(1000*m + 3) && isprime(1000*m + 7) && isprime(1000*m + 9), write("b064962.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 01 2009
A064963
10000n+1, 10000n+3, 10000n+7, 10000n+9 are all primes.
Original entry on oeis.org
676, 1189, 2515, 2830, 8224, 9001, 10621, 10786, 17611, 18640, 20983, 21277, 23419, 28468, 31450, 37720, 41530, 41596, 42025, 45238, 47212, 49912, 50992, 52222, 53815, 65827, 70786, 77044, 82324, 88297, 88918, 96193, 99262, 101992
Offset: 1
-
Select[Range[10^5], PrimeQ[10^4# + 1] && PrimeQ[10^4# + 3] && PrimeQ[10^4# + 7] && PrimeQ[10^4# + 9] &]
Select[Range[120000],AllTrue[10000#+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Mar 18 2022 *)
A064968
Numbers k such that 1000000000k+1, 1000000000k+3, 1000000000k+7, 1000000000k+9 are all primes.
Original entry on oeis.org
14965, 16813, 20767, 23083, 34270, 40198, 93238, 112096, 189802, 192484, 251248, 333946, 334969, 363514, 374107, 375127, 376765, 383473, 405046, 419458, 462928, 498139, 649948, 703246, 704374, 732463, 767101, 781885, 806467, 812902, 842428
Offset: 1
-
Select[Range[10^6], PrimeQ[10^9# + 1] && PrimeQ[10^9# + 3] && PrimeQ[10^9# + 7] && PrimeQ[10^9# + 9] &]
-
{ n=0; for (m=1, 10^9, b=10^9*m; if(isprime(b + 1) && isprime(b + 3) && isprime(b + 7) && isprime(b + 9), write("b064968.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 01 2009
A064964
100000n+1, 100000n+3, 100000n+7, 100000n+9 are all primes.
Original entry on oeis.org
283, 1864, 3145, 3772, 4153, 11902, 18829, 27736, 28129, 33739, 36469, 40207, 47533, 55996, 60871, 63184, 63244, 80839, 91174, 92683, 93379, 103672, 107236, 117337, 117589, 136765, 143110, 146590, 161986, 183889, 189118, 206419, 207055
Offset: 1
A064965
1000000n+1, 1000000n+3, 1000000n+7, 1000000n+9 are all primes.
Original entry on oeis.org
14311, 14659, 23299, 40861, 43303, 46405, 62239, 67327, 77071, 94237, 102796, 115201, 120220, 134968, 138721, 152980, 252715, 260947, 272365, 274534, 285244, 298342, 304489, 305713, 311032, 318802, 324025, 325321, 338908, 343885, 352621
Offset: 1
-
Select[Range[10^6/2], PrimeQ[10^6# + 1] && PrimeQ[10^6# + 3] && PrimeQ[10^6# + 7] && PrimeQ[10^6# + 9] &]
Select[Range[400000],AllTrue[10^6*#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 11 2015 *)
A064966
Numbers n such that 10000000n+1, 10000000n+3, 10000000n+7, 10000000n+9 are all primes.
Original entry on oeis.org
12022, 15298, 44413, 61507, 72199, 87463, 96538, 108862, 112129, 117694, 122176, 125716, 175078, 185746, 201493, 227221, 250414, 267844, 273460, 371194, 387028, 391765, 397066, 397792, 454921, 581365, 601177, 621010, 642199, 659788, 677206
Offset: 1
-
Select[Range[10^6/2], PrimeQ[10^7# + 1] && PrimeQ[10^7# + 3] && PrimeQ[10^7# + 7] && PrimeQ[10^7# + 9] &]
Select[Range[678000],AllTrue[# 10^7+{1,3,7,9},PrimeQ]&] (* Harvey P. Dale, Nov 13 2022 *)
A064967
100000000n+1, 100000000n+3, 100000000n+7, 100000000n+9 are all primes.
Original entry on oeis.org
27346, 62101, 149650, 168130, 207670, 230830, 242443, 249439, 257227, 278521, 300028, 329389, 342700, 401980, 436315, 452281, 456985, 523972, 528946, 530671, 535918, 612595, 642832, 657151, 732799, 733783, 746848, 758857, 857662, 866608
Offset: 1
-
Select[Range[10^6], PrimeQ[10^8# + 1] && PrimeQ[10^8# + 3] && PrimeQ[10^8# + 7] && PrimeQ[10^8# + 9] &]
Select[Range[900000],AllTrue[100000000#+{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 14 2016 *)
Showing 1-8 of 8 results.