cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242562 Primes p such that 1000p+1, 1000p+3, 1000p+7 and 1000p+9 are prime.

Original entry on oeis.org

13, 1447, 5527, 28201, 36217, 75079, 81157, 95911, 187423, 188677, 202327, 210643, 248077, 263323, 282589, 283267, 423043, 466897, 472597, 478189, 478603, 631273, 640261, 695749, 730111, 736279, 806929, 808021, 917641, 964303, 1018177, 1026547, 1064263, 1108489, 1150861
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Examples

			130001, 130003, 130007 and 130009 are all prime. Thus 13 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^5,s=prime(n);if(ispseudoprime(1000*s+1) && ispseudoprime(1000*s+3) && ispseudoprime(1000*s+7) && ispseudoprime(1000*s+9),print(s)));
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    {print(prime(n)) for n in range(1,10**5) if isprime(1000*prime(n)+1) and isprime(1000*prime(n)+3) and isprime(1000*prime(n)+7) and isprime(1000*prime(n)+9)}
    

A242564 Least prime p such that p*10^n+1, p*10^n+3, p*10^n+7 and p*10^n+9 are all prime.

Original entry on oeis.org

19, 1657, 13, 9001, 283, 115201, 61507, 249439, 375127, 472831, 786823, 172489, 1237, 2359033, 163063, 961981, 1442017, 457, 1208833, 4845583, 1146877, 11550193, 436831, 1911031, 581047, 4504351, 215737, 3685051, 27805381, 1343791, 82491967, 15696349, 20446423
Offset: 1

Views

Author

Derek Orr, May 17 2014

Keywords

Examples

			2*10^3+1 (2001), 2*10^3+3 (2003), 2*10^3+7 (2007) and 2*10^3+9 (2009) are not all prime.
3*10^3+1 (3001), 3*10^3+3 (3003), 3*10^3+7 (3007) and 3*10^3+9 (3009) are not all prime.
5*10^3+1 (5001), 5*10^3+3 (5003), 5*10^3+7 (5007) and 5*10^3+9 (5009) are not all prime.
7*10^3+1 (7001), 7*10^3+3 (7003), 7*10^3+7 (7007) and 7*10^3+9 (7009) are not all prime.
11*10^3+1 (11001), 11*10^3+3 (11003), 11*10^3+7 (11007) and 11*10^3+9 (11009) are not all prime.
13*10^3+1 (13001), 13*10^3+3 (13003), 13*10^3+7 (13007) and 13*10^3+9 (13009) are all prime. Thus, a(3) = 13.
		

Crossrefs

Programs

  • Mathematica
    lpp[n_]:=Module[{c=10^n,p=2},While[Not[AllTrue[p*c+{1,3,7,9},PrimeQ]], p= NextPrime[ p]];p]; Array[lpp,40] (* Harvey P. Dale, Mar 24 2018 *)
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    def Pr(n):
      for p in range(1,10**7):
        if isprime(prime(p)*(10**n)+1) and isprime(prime(p)*(10**n)+3) and isprime(prime(p)*(10**n)+7) and isprime(prime(p)*(10**n)+9):
          return prime(p)
    n = 1
    while n < 50:
      print(Pr(n))
      n += 1

A243409 Primes p such that 100p-1, 100p-3, 100p-7, and 100p-9 are all prime.

Original entry on oeis.org

2, 797, 1193, 6803, 15773, 28793, 35507, 41579, 53189, 53279, 57347, 60161, 70457, 77549, 81839, 140549, 143387, 150779, 151241, 164447, 170627, 201011, 255083, 285287, 293831, 300317, 316073, 336671, 343661, 449921, 470087, 486947, 488603, 518801, 556289, 569243, 602087
Offset: 1

Views

Author

Derek Orr, Jun 04 2014

Keywords

Examples

			2 is prime, 100*2-1 = 199 is prime, 100*2-3 = 197 is prime, 100*2-7 = 193 is prime, and 100*2-9 = 191 is prime. Thus 2 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[50000]],PrimeQ[100# -1]&&PrimeQ[100# -3]&&PrimeQ[100# -7] &&PrimeQ[100# -9] &] (* K. D. Bajpai, Jun 13 2014 *)
    Select[Prime[Range[50000]],AllTrue[100#-{1,3,7,9},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 06 2019 *)
  • PARI
    for(n=1,10^5,if(ispseudoprime(100*prime(n)-1)&& ispseudoprime(100*prime(n)-3)&& ispseudoprime(100*prime(n)-7)&& ispseudoprime(100*prime(n)-9),print1(prime(n),", ")))
  • Python
    import sympy
    from sympy import isprime
    from sympy import prime
    {print(prime(n),end=', ') for n in range(1,10**5) if isprime(100*prime(n)-1) and isprime(100*prime(n)-3) and isprime(100*prime(n)-7) and isprime(100*prime(n)-9)}
    
Showing 1-3 of 3 results.