cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064710 Numbers k such that the sum of divisors of k and the product of divisors of k are both perfect squares.

Original entry on oeis.org

1, 22, 66, 70, 81, 94, 115, 119, 170, 210, 214, 217, 265, 282, 310, 322, 343, 345, 357, 364, 382, 385, 472, 497, 510, 517, 527, 642, 651, 679, 710, 742, 745, 782, 795, 820, 862, 884, 889, 930, 935, 966, 970, 1029, 1066, 1080, 1092, 1146, 1155, 1174
Offset: 1

Views

Author

Jason Earls, Oct 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    psQ[n_]:=Module[{d=Divisors[n]},IntegerQ[Sqrt[Total[d]]] && IntegerQ[ Sqrt[Times@@d]]]; Select[Range[1200],psQ] (* Harvey P. Dale, Mar 07 2012 *)
  • PARI
    pd(n) = n^(numdiv(n)/2);
    for(n=1,2000, if(issquare(sigma(n)) && issquare(pd(n)), print1(n,", ")))
    
  • PARI
    pd(n)= { d=numdiv(n); if (d%2, round(sqrt(n))^d, n^(d/2)) }
    { n=0; for (m=1, 10^9, if (issquare(sigma(m)) && issquare(pd(m)), write("b064710.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 23 2009
    
  • Sage
    [n for n in (1..100000) if sigma(n).is_square()and prod(divisors(n)).is_square()] # Giuseppe Coppoletta, Dec 16 2014

Extensions

Corrected by Harvey P. Dale, Oct 23 2001