cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064725 Sum of primes dividing Fibonacci(n) (with repetition).

Original entry on oeis.org

0, 0, 2, 3, 5, 6, 13, 10, 19, 16, 89, 14, 233, 42, 68, 57, 1597, 42, 150, 60, 436, 288, 28657, 46, 3011, 754, 181, 326, 514229, 114, 2974, 2264, 19892, 5168, 141979, 160, 2443, 9499, 135956, 2228, 62158, 680, 433494437, 641, 109526, 29257, 2971215073
Offset: 1

Views

Author

Jason Earls, Oct 16 2001

Keywords

Examples

			a(12) = 14 because Fibonacci(12) = 144 = 2^4*3^2 and the sum of the prime divisors with repetition is 4*2 + 2*3 = 14.
		

Crossrefs

Cf. A000045, A001414, A080648 (without repetition).

Programs

  • Maple
    with (numtheory):with(combinat, fibonacci):
    sopfr:= proc(n) local e, j; e := ifactors(fibonacci(n))[2]:
    add (e[j][1]*e[j][2], j=1..nops(e)) end:
    seq (sopfr(n), n=1..100); # Michel Lagneau, Nov 13 2012
    # second Maple program:
    a:= n-> add(i[1]*i[2], i=ifactors((<<0|1>, <1|1>>^n)[1, 2])[2]):
    seq(a(n), n=1..47);  # Alois P. Heinz, Sep 03 2019
  • Mathematica
    fiboPrimeFactorSum[n_] := Plus @@ Times @@@ FactorInteger@ Fibonacci[n]; fiboPrimeFactorSum[1] = 0; Array[fiboPrimeFactorSum, 60] (* Michel Lagneau, Nov 13 2012 *)
  • PARI
    sopfr(n)= { local(f,s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }
    { for (n = 0, 350, write("b064725.txt", n, " ", sopfr(fibonacci(n))) ) } \\ Harry J. Smith, Sep 23 2009