cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A064741 Length of A064743(n); Index of the largest prime factor of the n-th term of EKG-sequence.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 1, 3, 3, 3, 2, 4, 4, 4, 2, 1, 3, 5, 5, 5, 2, 3, 3, 4, 4, 6, 6, 6, 2, 1, 7, 7, 7, 4, 8, 8, 8, 3, 3, 5, 9, 9, 9, 2, 3, 6, 2, 4, 4, 4, 3, 5, 6, 4, 10, 10, 10, 5, 11, 11, 11, 2, 1, 7, 12, 12, 12, 3, 6, 8, 3, 13, 13, 13, 2, 4, 5, 5, 14, 14, 14, 3, 7, 8, 3, 9, 15, 15, 15, 2, 4, 6, 6, 7, 5, 4, 2, 16, 16, 16, 8, 5, 4, 10
Offset: 1

Views

Author

N. J. A. Sloane, Oct 18 2001

Keywords

Crossrefs

Length of n-th row of table in A064744.
Cf. A061395, A064413, A304733, A304734 (ordinal transform).

Programs

  • Mathematica
    PrimePi@ FactorInteger[#][[-1, 1]] & /@ Nest[Append[#, Block[{k = 3}, While[Or[MemberQ[#, k], GCD[#[[-1]], k] == 1], k++]; k]] &, {1, 2}, 103] (* Michael De Vlieger, May 22 2018 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A064741(n) = A061395(A064413(n)); \\ Needs also code for A064413.

Formula

a(n) = A061395(A064413(n)) = A000720(A304733(n)). - Antti Karttunen, May 18 2018

Extensions

Offset corrected to 1, terms a(42) .. a(46) [that were terms a(41) .. a(45)] also corrected, more terms and alternative description added by Antti Karttunen, May 18 2018

A064740 Smallest controlling prime when A064413(n) is computed.

Original entry on oeis.org

2, 2, 2, 3, 3, 3, 2, 2, 5, 5, 3, 2, 7, 7, 3, 2, 2, 2, 11, 11, 3, 3, 5, 5, 7, 2, 13, 13, 3, 2, 2, 17, 17, 3, 2, 19, 19, 3, 5, 2, 2, 23, 23, 3, 2, 2, 2, 2, 7, 7, 3, 5, 5, 5, 2, 29, 29, 3, 2, 31, 31, 3, 2, 2, 2, 37, 37, 3, 3, 2, 2, 2, 41, 41, 3, 3, 7, 11, 2, 43, 43, 3, 5, 5, 5, 2, 2, 47, 47, 3, 2, 7
Offset: 2

Views

Author

N. J. A. Sloane, Oct 18 2001

Keywords

Crossrefs

Formula

a(n) = A020639(A073734(n)). - Michael De Vlieger, Dec 10 2021

Extensions

More terms from David Wasserman, Aug 05 2002

A064742 Total number of primes (with multiplicity) dividing A064413(n).

Original entry on oeis.org

0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 2, 4, 4, 3, 2, 1, 2, 3, 3, 2, 2, 3, 2, 1, 2, 4, 5, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 5, 3, 3, 4, 4, 2, 3, 4, 2, 2, 3, 2, 1, 2, 3, 2, 1, 2, 5, 6, 3, 2, 1, 2, 3, 3, 3, 5, 2, 1, 2, 4, 4, 2, 4, 2, 1, 2, 4, 2, 2, 4, 3, 2, 1, 2, 6, 3, 2, 4, 3, 3, 3, 5, 2, 1, 2, 3, 3, 5, 3
Offset: 1

Views

Author

N. J. A. Sloane, Oct 18 2001

Keywords

Crossrefs

Sum of "digits" of A064743.

Programs

  • Mathematica
    terms = 105;
    ekg[s_] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++]; Append[s, k]];
    EKG = Nest[ekg, {1, 2}, terms-2];
    PrimeOmega /@ EKG (* Jean-François Alcover, Sep 02 2018, after Robert G. Wilson v in A064413 *)

Formula

a(n) = A001222(A064413(n)). - Michel Marcus, Aug 21 2023

Extensions

More terms from Vladeta Jovovic, Oct 20 2001

A064744 A064413(n) written in base of primes, read from right to left, written as n-th row of a table.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 0, 2, 0, 1, 2, 3, 1, 0, 1, 1, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 3, 4, 1, 0, 2, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 3, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 5, 1, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2001

Keywords

Examples

			Triangle begins:
  0;
  1;
  2;
  1,1;
  1,0;
  2,0;
  1,2;
  3;
  ...
		

Crossrefs

A064741(n) gives length of n-th row. See A064743 for another version. See A064301 for rightmost column.

A353728 A115510(n) written in base 2.

Original entry on oeis.org

1, 11, 10, 110, 100, 101, 111, 1001, 1000, 1010, 1011, 1100, 1101, 1110, 1111, 10001, 10000, 10010, 10011, 10100, 10101, 10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111, 100001, 100000, 100010, 100011, 100100, 100101, 100110, 100111, 101000, 101001, 101010, 101011, 101100, 101101, 101110, 101111
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2022

Keywords

Crossrefs

Programs

  • Python
    from itertools import islice
    def A353728_gen(): # generator of terms
        yield 1
        l1, s, b = 1, 2, set()
        while True:
            i = s
            while True:
                if i & l1 and not i in b:
                    yield int(bin(i)[2:])
                    l1 = i
                    b.add(i)
                    while s in b:
                        b.remove(s)
                        s += 1
                    break
                i += 1
    A353728_list = list(islice(A353728_gen(),30)) # Chai Wah Wu, May 13 2022
Showing 1-5 of 5 results.