A064806 a(n) = n + digital root of n.
2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 13, 15, 17, 19, 21, 23, 25, 27, 20, 22, 24, 26, 28, 30, 32, 34, 36, 29, 31, 33, 35, 37, 39, 41, 43, 45, 38, 40, 42, 44, 46, 48, 50, 52, 54, 47, 49, 51, 53, 55, 57, 59, 61, 63, 56, 58, 60, 62, 64, 66, 68, 70, 72, 65, 67, 69, 71
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
- Index entries for Colombian or self numbers and related sequences.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,1,-1).
Programs
-
Haskell
a064806 n = n + a010888 n -- Reinhard Zumkeller, Apr 13 2013
-
Maple
A064806 := proc(n) return n+1 + ((n-1) mod 9): end: seq(A064806(n), n=1..100); # Nathaniel Johnston, May 04 2011
-
Mathematica
Table[n+Mod[n-1,9]+1,{n,70}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{2,4,6,8,10,12,14,16,18,11},70] (* Harvey P. Dale, Nov 19 2022 *)
-
PARI
a(n) = { n + (n - 1)%9 + 1 } \\ Harry J. Smith, Sep 26 2009
Formula
a(n) = n + A010888(n).
G.f.: -x*(9*x^9-2*x^8-2*x^7-2*x^6-2*x^5-2*x^4-2*x^3-2*x^2-2*x-2) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 05 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 263/315 + 8*Pi/(9*sqrt(3)) - log(2)/9 + (2*Pi/9)*(sec(Pi/18) - 4*cos(Pi/18)). - Amiram Eldar, May 12 2025