cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064806 a(n) = n + digital root of n.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 11, 13, 15, 17, 19, 21, 23, 25, 27, 20, 22, 24, 26, 28, 30, 32, 34, 36, 29, 31, 33, 35, 37, 39, 41, 43, 45, 38, 40, 42, 44, 46, 48, 50, 52, 54, 47, 49, 51, 53, 55, 57, 59, 61, 63, 56, 58, 60, 62, 64, 66, 68, 70, 72, 65, 67, 69, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2001

Keywords

Crossrefs

Cf. A010888 (digital root of n), A062028 (sum of digits of n).

Programs

  • Haskell
    a064806 n = n + a010888 n  -- Reinhard Zumkeller, Apr 13 2013
  • Maple
    A064806 := proc(n) return n+1 + ((n-1) mod 9): end: seq(A064806(n), n=1..100); # Nathaniel Johnston, May 04 2011
  • Mathematica
    Table[n+Mod[n-1,9]+1,{n,70}] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,1,-1},{2,4,6,8,10,12,14,16,18,11},70] (* Harvey P. Dale, Nov 19 2022 *)
  • PARI
    a(n) = { n + (n - 1)%9 + 1 } \\ Harry J. Smith, Sep 26 2009
    

Formula

a(n) = n + A010888(n).
G.f.: -x*(9*x^9-2*x^8-2*x^7-2*x^6-2*x^5-2*x^4-2*x^3-2*x^2-2*x-2) / ((x-1)^2*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Apr 05 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 263/315 + 8*Pi/(9*sqrt(3)) - log(2)/9 + (2*Pi/9)*(sec(Pi/18) - 4*cos(Pi/18)). - Amiram Eldar, May 12 2025