cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064842 Maximal value of Sum_{i=1..n} (p(i) - p(i+1))^2, where p(n+1) = p(1), as p ranges over all permutations of {1, 2, ..., n}.

Original entry on oeis.org

0, 2, 6, 18, 36, 66, 106, 162, 232, 322, 430, 562, 716, 898, 1106, 1346, 1616, 1922, 2262, 2642, 3060, 3522, 4026, 4578, 5176, 5826, 6526, 7282, 8092, 8962, 9890, 10882, 11936, 13058, 14246, 15506, 16836, 18242, 19722, 21282, 22920, 24642, 26446, 28338, 30316
Offset: 1

Views

Author

N. J. A. Sloane, Oct 25 2001

Keywords

Examples

			a(4) = 18 because the values of the sum for the permutations of {1, 2, 3, 4} are 10 (8 times), 12 (8 times) and 18 (8 times).
		

Crossrefs

Cf. A064843.

Programs

  • Maple
    a:=proc(n) if n mod 2 = 0 then (n^3-4*n)/3+2 else (n^3-4*n)/3+1 fi end: seq(a(n),n=1..41); # Emeric Deutsch
  • Mathematica
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 2, 6, 18, 36}, 45] (* Jean-François Alcover, Apr 01 2020 *)

Formula

If n mod 2 = 0, then n^3/3 - 4*n/3 + 2 else n^3/3 - 4*n/3 + 1.
a(n) = 2 * A064843(n).
G.f.: -2*x^2*(-1 + x^3 - 2*x^2) / ((1 + x)*(x - 1)^4). - R. J. Mathar, Nov 26 2012
a(n) = (2*n^3 - 8*n + 3*(-1)^n + 9)/6. - Luce ETIENNE, Jul 08 2014
E.g.f.: (2 - x + x^2 + x^3/3)*cosh(x) + (1 - x + x^2 + x^3/3)*sinh(x) - 2. - Stefano Spezia, Apr 13 2024

Extensions

Edited by Emeric Deutsch, Jul 30 2005