cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064843 a(n) = A064842(n)/2.

Original entry on oeis.org

0, 1, 3, 9, 18, 33, 53, 81, 116, 161, 215, 281, 358, 449, 553, 673, 808, 961, 1131, 1321, 1530, 1761, 2013, 2289, 2588, 2913, 3263, 3641, 4046, 4481, 4945, 5441, 5968, 6529, 7123, 7753, 8418, 9121, 9861, 10641, 11460, 12321, 13223, 14169
Offset: 1

Views

Author

N. J. A. Sloane, Oct 25 2001

Keywords

Comments

Partial sums of A084265. - N. J. A. Sloane, Jul 20 2008

Crossrefs

Formula

G.f.: -x^2*(-1+x^3-2*x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Nov 26 2012

A110610 Maximal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.

Original entry on oeis.org

1, 4, 11, 25, 48, 82, 129, 191, 270, 368, 487, 629, 796, 990, 1213, 1467, 1754, 2076, 2435, 2833, 3272, 3754, 4281, 4855, 5478, 6152, 6879, 7661, 8500, 9398, 10357, 11379, 12466, 13620, 14843, 16137, 17504, 18946, 20465, 22063, 23742, 25504
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2005

Keywords

Examples

			a(4)=25 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if n=1 then 1 else (2*n^3+3*n^2-11*n+18)/6 fi end: seq(a(n),n=1..50);
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + x) (1 - x + 2 x^2 - x^3)/(1 - x)^4, {x, 0, 42}], x] (* Michael De Vlieger, Jan 29 2022 *)

Formula

a(1)=1; a(n)=(2n^3+3n^2-11n+18)/6 for n>=2.
G.f.: x*(1+x)*(1-x+2*x^2-x^3)/(1-x)^4. [Colin Barker, Jul 24 2012]

A110611 Minimal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.

Original entry on oeis.org

1, 4, 11, 21, 37, 58, 87, 123, 169, 224, 291, 369, 461, 566, 687, 823, 977, 1148, 1339, 1549, 1781, 2034, 2311, 2611, 2937, 3288, 3667, 4073, 4509, 4974, 5471, 5999, 6561, 7156, 7787, 8453, 9157, 9898, 10679, 11499, 12361, 13264, 14211, 15201, 16237
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2005

Keywords

Examples

			a(4)=21 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).
		

Crossrefs

Programs

  • Magma
    I:=[1, 4, 11, 21, 37]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..50]]; // Vincenzo Librandi, May 11 2012
  • Maple
    a:=proc(n) if n mod 2 = 0 then (n^3+3*n^2+5*n-6)/6 else (n^3+3*n^2+5*n-3)/6 fi end: seq(a(n),n=1..52);
  • Mathematica
    CoefficientList[Series[(1+x+x^2-2*x^3+x^4)/((1-x)^4*(1+x)),{x,0,50}],x] (* Vincenzo Librandi, May 11 2012 *)

Formula

a(n) = (n^3+3*n^2+5*n-6)/6 if n is even; a(n)=(n^3+3*n^2+5*n-3)/6 if n is odd.
G.f.: x*(1+x+x^2-2*x^3+x^4)/((1-x)^4*(1+x)). [Colin Barker, May 10 2012]
a(n) = (2*n^3+6*n^2+10*n-9-3*(-1)^n)/12. - Luce ETIENNE, Jul 26 2014

A358212 a(n) is the maximal possible sum of squares of the side lengths of an n^2-gon supported on a subset 1 <= x,y <= n of an integer lattice.

Original entry on oeis.org

4, 10, 36, 98, 232
Offset: 2

Views

Author

Giedrius Alkauskas, Nov 04 2022

Keywords

Comments

Examples show that a(7) >= 462, a(8) >= 842, a(9) >= 1424, a(10) >= 2242.
Asymptotics: liminf a(n)/n^4 >= 8/27, limsup a(n)/n^4 <= 2/3.

Crossrefs

Extensions

a(5) from Giedrius Alkauskas, Oct 09 2023
a(6) from Giedrius Alkauskas, Nov 30 2023
Showing 1-4 of 4 results.