A064852 Number of orbits in A002619 consisting of n permutations.
1, 0, 0, 1, 4, 18, 102, 624, 4476, 36248, 329890, 3326054, 36846276, 444783906, 5811885808, 81729607680, 1230752346352, 19760412095328, 336967037143578, 6082255011151724, 115852476579789984, 2322315553090615850, 48869596859895986086, 1077167364116800207968
Offset: 1
Examples
n=6: The orbit {(124635)(235146)(346251)(451362)(562413)(613524)} consists of 6 single permutations.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
a[n_] := Sum[ MoebiusMu[n/k] * EulerPhi[n/k] * (n/k)^k * (k!/n^2), {k, Divisors[n]}]; Table[a[n], {n, 1, 22}] (* Jean-François Alcover, Jun 26 2012, after PARI *)
-
PARI
for(n=1,23,print(sumdiv(n,d,moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2)))
-
PARI
{ for (n=1, 100, a=sumdiv(n, d, moebius(n/d)*eulerphi(n/d)*(n/d)^d*d!/n^2); write("b064852.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009
Formula
a(n) = Sum_{k|n} mu(n/k)*phi(n/k)*(n/k)^k*k!/n^2 = A047918(n, n)/n^2.
Extensions
Corrected and extended by Jason Earls and Vladeta Jovovic, Oct 08 2001
Comments