A064896 Numbers of the form (2^(m*r)-1)/(2^r-1) for positive integers m, r.
1, 3, 5, 7, 9, 15, 17, 21, 31, 33, 63, 65, 73, 85, 127, 129, 255, 257, 273, 341, 511, 513, 585, 1023, 1025, 1057, 1365, 2047, 2049, 4095, 4097, 4161, 4369, 4681, 5461, 8191, 8193, 16383, 16385, 16513, 21845, 32767, 32769, 33825, 37449, 65535, 65537
Offset: 1
Examples
73 is included because it is 1001001 in binary, whose 1's are diluted by blocks of two 0's.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- T. Chinburg and M. Henriksen, Sums of k-th powers in the ring of polynomials with integer coefficients, Acta Arithmetica, 29 (1976), 227-250.
- K. B. Stolarsky, Integers whose multiples have anomalous digital frequencies, Acta Arithmetica, 38 (1980), 117-128.
Crossrefs
Programs
-
Maple
f := proc(p) local m,r,t1; t1 := {}; for m from 1 to 10 do for r from 1 to 10 do t1 := {op(t1), (p^(m*r)-1)/(p^r-1)}; od: od: sort(convert(t1,list)); end; f(2); # very crude! # Alternative: N:= 10^6: # to get all terms <= N A:= sort(convert({1,seq(seq((2^(m*r)-1)/(2^r-1),m=2..1/r*ilog2(N*(2^r-1)+1)),r=1..ilog2(N-1))},list)); # Robert Israel, Jun 12 2015
-
PARI
lista(nn) = {v = [1]; x = (2^nn-1); for (m=2, nn, r = 1; while ((y = (2^(m*r)-1)/(2^r-1)) <=x, v = Set(concat(v, y)); r++);); v;} \\ Michel Marcus, Jun 12 2015
Comments