A064901 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 3.
65, 115, 119, 215, 217, 265, 365, 377, 413, 415, 511, 515, 517, 565, 629, 707, 779, 815, 865, 965, 1099, 1115, 1165, 1207, 1243, 1315, 1391, 1393, 1415, 1465, 1501, 1565, 1589, 1687, 1727, 1765, 1769, 1865, 1883, 1915, 1969, 1981, 2165, 2177, 2215
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* Michael De Vlieger, Apr 12 2018 *)
-
PARI
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 3); \\ Michel Marcus, Apr 16 2018
-
Python
from sympy import factorint def is_A064901(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3) def first_A064901(n): x = 1 an = [] while len(an) < n: if is_A064901(x): an.append(x) x += 2 return an # John Cerkan, Apr 14 2018
Extensions
Name clarified by John Cerkan, Apr 13 2018
Comments