cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064901 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 3.

Original entry on oeis.org

65, 115, 119, 215, 217, 265, 365, 377, 413, 415, 511, 515, 517, 565, 629, 707, 779, 815, 865, 965, 1099, 1115, 1165, 1207, 1243, 1315, 1391, 1393, 1415, 1465, 1501, 1565, 1589, 1687, 1727, 1765, 1769, 1865, 1883, 1915, 1969, 1981, 2165, 2177, 2215
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Comments

The semiprimes must be squarefree, since p1 does not divide p2. - Michael De Vlieger, Apr 12 2018

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A006881, A064899-A064911.

Programs

  • Mathematica
    Select[Range@ 2215, And[#[[All, -1]] == {1, 1}, Mod[#2, #1] == 3 & @@ #[[All, 1]]] &@ FactorInteger[#] &] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 3); \\ Michel Marcus, Apr 16 2018
  • Python
    from sympy import factorint
    def is_A064901(n):
        f = factorint(n)
        return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 3)
    def first_A064901(n):
        x = 1
        an = []
        while len(an) < n:
            if is_A064901(x): an.append(x)
            x += 2
        return an # John Cerkan, Apr 14 2018
    

Extensions

Name clarified by John Cerkan, Apr 13 2018