A064924 If n is prime then a(n) = n; for the subsequent nonprime positions a(n + k) = (k+1)*n; then at the next prime position a new subsequence begins.
2, 3, 6, 5, 10, 7, 14, 21, 28, 11, 22, 13, 26, 39, 52, 17, 34, 19, 38, 57, 76, 23, 46, 69, 92, 115, 138, 29, 58, 31, 62, 93, 124, 155, 186, 37, 74, 111, 148, 41, 82, 43, 86, 129, 172, 47, 94, 141, 188, 235, 282, 53, 106, 159, 212, 265, 318, 59, 118, 61, 122, 183, 244
Offset: 2
Examples
a(7) = A007917(7) * (A064722(7) + 1) = 7 * (0 + 1) = 7; a(8) = A007917(8) * (A064722(8) + 1) = 7 * (1 + 1) = 14; a(9) = A007917(9) * (A064722(9) + 1) = 7 * (2 + 1) = 21; a(10) = A007917(10) * (A064722(10) + 1) = 7 * (3 + 1) = 28; a(11) = 11.
Links
- R. Zumkeller, Table of n, a(n) for n = 2..10000
Programs
-
Haskell
import Data.List (genericTake) a064924 n = a064924_list !! (n-1) a064924_list = concat $ zipWith (\p g -> genericTake g [p, 2 * p ..]) a000040_list $ zipWith (-) (tail a000040_list) a000040_list -- Reinhard Zumkeller, Jul 05 2013
-
Mathematica
a[n_?PrimeQ] := n; a[n_] := NextPrime[n, -1]*(n - NextPrime[n, -1] + 1); Table[a[n], {n, 2, 64}] (* Jean-François Alcover, Sep 19 2011 *) Flatten[First[#]Range[Last[#]-First[#]]&/@Partition[Prime[Range[20]],2,1]] (* Harvey P. Dale, May 03 2012 *)
-
PARI
{ for (n=2, 10000, if (isprime(n), a=m=n; k=2, a=k*m; k++); write("b064924.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 29 2009
Comments