cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A065358 The Jacob's Ladder sequence: a(n) = Sum_{k=1..n} (-1)^pi(k), where pi = A000720.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 5, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 3, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, -1, -2, -1, 0, 1, 2, 3, 4, 5, 6, 5, 4
Offset: 0

Views

Author

Jason Earls, Oct 31 2001

Keywords

Comments

Partial sums of A065357.

Crossrefs

Cf. A000720, A065357, A064940 (the zero terms).

Programs

  • Maple
    with(numtheory): f:=n->add((-1)^pi(k),k=1..n); [seq(f(n),n=0..60)]; # N. J. A. Sloane, Feb 20 2018
  • Mathematica
    Table[Sum[(-1)^(PrimePi[k]), {k,1,n}], {n,0,100}] (* G. C. Greubel, Feb 20 2018 *)
    a[0] = 0; a[n_] := a[n] = a[n - 1] + (-1)^PrimePi[n]; Array[a, 105, 0] (* Robert G. Wilson v, Feb 20 2018 *)
  • PARI
    { a=0; for (n=1, 1000, a+=(-1)^primepi(n); write("b065358.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 30 2009
    [0] cat [(&+[(-1)^(#PrimesUpTo(k)):k in [1..n]]): n in [1..100]];  // G. C. Greubel, Feb 20 2018

Extensions

Edited by Frank Ellermann, Feb 02 2002
Edited by N. J. A. Sloane, Feb 20 2018 (added initial term a(0)=0, added name suggested by the Fraile et al. paper)

A299300 Values of k such that A065358(k-1) = 0.

Original entry on oeis.org

1, 3, 7, 35, 39, 43, 51, 55, 79, 87, 91, 107, 111, 115, 835, 843, 1391, 1407, 1411, 1471, 1579, 1587, 1651, 1663, 1843, 1851, 3383, 3491, 3507, 3515, 3519, 3547, 3659, 3691, 3719, 3747, 3779, 3819, 3823, 3843, 3851, 3855, 3871, 3899, 3939, 3947, 3987, 3991
Offset: 1

Views

Author

N. J. A. Sloane, Feb 20 2018

Keywords

Comments

Obtained by adding 1 to the terms of A064940.
Fraile et al. (2017) describe essentially the same sequence as A065358 except with offset 1 instead of 0. So the present sequence gives the values of k so that their version of the Jacob's Ladder sequence has the value 0.
For the first 7730 terms, see the b-file in A064940.

Crossrefs

Programs

  • Mathematica
    A065358:= Table[Sum[(-1)^(PrimePi[k]), {k,1,n}], {n, 0, 500}]; Select[Range[50], A065358[[#]] == 0 &] (* G. C. Greubel, Feb 20 2018 *)
  • Python
    from sympy import nextprime
    A299300_list, p, d, n, r = [], 2, -1, 0, False
    while n <= 10**6:
        pn, k = p-n, d if r else -d
        if 0 < k <= pn:
            A299300_list.append(n+k)
        d += -pn if r else pn
        r, n, p = not r, p, nextprime(p) # Chai Wah Wu, Feb 21 2018
Showing 1-2 of 2 results.