A064942
Decimal numbers n such that after possibly prefixing leading 0's to n, the resulting number n' can be broken into 2 numbers of equal length, n' = xy, such that x^2+y^2 = n (y may also have leading zeros).
Original entry on oeis.org
1, 1233, 8833, 10100, 990100, 5882353, 94122353, 99009901, 100010000, 1765038125, 2584043776, 7416043776, 8235038125, 9901009901, 48600220401, 116788321168, 123288328768, 601300773101, 876712328768, 883212321168, 990100990100
Offset: 1
Ulrich Schimke (ulrschimke(AT)aol.com)
8833 = 88^2 + 33^2, 5882353 = 0588^2 + 2353^2.
Cf.
A064943 for the number of solutions,
A055616 for the solutions where leading zeros are not allowed,
A055617,
A055618,
A055619 for some infinite subsequences and
A002654 for finding the number of ways writing an integer as sum of two squares.
-
with (numtheory): for m from 1 to 10 do: for i in sum2sqr(10^(2*m)+1) do: if i[1] > 1 and i[1] < 10^m then if type(i[1],odd) then a := (i[2]+10^m)/2: b := (i[1]+1)/2: else a := (i[1]+10^m)/2: b := (i[2]+1)/2: fi: print("Length =", 2*m, "Solution =", (10^m-a)*10^m+b): print(Length = 2*m, Solution = a*10^m+b): fi: od: od:
A258482
Positive numbers n with concatenations n=x//y such that n=x^2-y^2.
Original entry on oeis.org
100, 147, 10000, 13467, 1000000, 1010100, 1016127, 1034187, 1140399, 1190475, 1216512, 1300624, 1334667, 1416767, 1484847, 1530900, 100000000, 102341547, 102661652, 116604399, 133346667, 159809775, 10000000000, 10101010100, 13333466667, 14848484847
Offset: 1
147 is a member, since 147 = 14^2 - 7^2.
1484847 is a member, since 1484847 = 1484^2- 847^2.
48 is a member of A113797 since 48 = |4^2 - 8^2|, but 48 is not equal to 4^2 - 8^2, so 48 is not a member of this sequence.
-
isok(n) = {d = digits(n); if (#d > 1, for (k=1, #d-1, vba = Vecrev(vector(k, i, d[i])); vbb = Vecrev(vector(#d-k, i, d[k+i])); da = sum(i=1, #vba, vba[i]*10^(i-1)); db = sum(i=1, #vbb, vbb[i]*10^(i-1)); if (da^2 - db^2 == n, return(1));););} \\ Michel Marcus, Jun 14 2015
-
for p in range(1, 7):
for i in range(10**p, 10**(p + 1)):
c = 10**(int((p - 1) / 2) + 1)
a, b = i // c, i % c
if i == a**2 - b**2:
print(i, end=",")
Showing 1-2 of 2 results.
Comments