A259379 Numbers k of the form a - b + c, such that k^3 equals the decimal concatenation a//b//c and numbers k, b, and c have the same number of digits.
155, 209, 274, 286, 287, 351, 364, 428, 573, 637, 715, 727, 846, 923, 1095, 1096, 2191, 8905, 18182, 18183, 81818, 81819, 326734, 336634, 663367, 673267, 2727273, 2727274, 4545454, 5454547, 7272727, 23529411, 23529412, 76470589
Offset: 1
Examples
155^3 = 3723875 and 155 = 3 - 723 + 875. 715^3 = 365525875 and 715 = 365 - 525 + 875.
Links
- Pieter Post, Table of n, a(n) for n = 1..189
Programs
-
PARI
isok(n)=nb = #digits(n, 10); if (a = n^3 \ 10^(2*nb), c = n^3 % 10^nb; b = (n^3 - a*10^(2*nb))\10^nb; n^3 == (a-b+c)^3;); \\ Michel Marcus, Aug 05 2015
-
Python
def modb(n,m): kk = 0 l = 1 while n > 0: na = n % m l += 1 kk += ((-1)**l) * na n //= m return kk for n in range (100, 10**9): ll = len(str(n)) if modb(n**3, 10**ll) == n: print(n, end=', ') # corrected by David Radcliffe, May 09 2025
Comments