cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064949 a(n) = Sum_{i|n, j|n} min(i,j).

Original entry on oeis.org

1, 5, 6, 15, 8, 32, 10, 37, 23, 42, 14, 100, 16, 52, 52, 83, 20, 125, 22, 132, 64, 72, 26, 252, 45, 82, 76, 162, 32, 286, 34, 177, 88, 102, 88, 397, 40, 112, 100, 336, 44, 352, 46, 222, 208, 132, 50, 572, 75, 239, 124, 252, 56, 416, 120, 414, 136, 162, 62, 916, 64
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Examples

			a(6) = dot_product(7,5,3,1)*(1,2,3,6) = 7*1 + 5*2 + 3*3 + 1*6 = 32.
		

Crossrefs

Programs

  • Maple
    with(numtheory): seq(add((2*tau(n)-2*i+1)*sort(convert(divisors(n),'list'))[i],i=1..tau(n)), n=1..200);
  • Mathematica
    Array[Function[{t, d}, Total@ MapIndexed[#1 (2 t - 2 First[#2] + 1) &, d]] @@ {DivisorSigma[0, #], Divisors[#]} &, 61] (* Michael De Vlieger, Oct 25 2021 *)
  • PARI
    a(n) = { my(d=divisors(n), t=length(d)); sum(i=1, t, (2*t - 2*i + 1)*d[i]) } \\ Harry J. Smith, Oct 01 2009
    
  • PARI
    A064949(n) = { my(i=0, u=numdiv(n)); sumdiv(n,d,i++; (((2*u)-(2*i))+1)*d); }; \\ Antti Karttunen, Nov 14 2021

Formula

a(n) = Sum_{i=1..tau(n)} (2*tau(n)-2*i+1)*d_i, where {d_i}, i=1..tau(n), is increasing sequence of divisors of n.
a(n) = Sum_{i=1..n} A135539(n,i)^2. - Ridouane Oudra, Oct 25 2021
a(n) = A000203(n) * (2*A000005(n)+1) - 2*A064944(n). - Amiram Eldar, Jan 13 2025
From Ridouane Oudra, Aug 13 2025: (Start)
a(n) = A064945(n) + A064947(n).
a(n) = 2*A064947(n) + A000203(n).
a(n) = 2*A064945(n) - A000203(n).
a(n) = 2*A064840(n) - A064948(n). (End)