cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064951 a(n) = Sum_{1 <= x, y <= n} lcm(x, y).

Original entry on oeis.org

1, 7, 28, 72, 177, 303, 604, 948, 1497, 2127, 3348, 4272, 6313, 8119, 10324, 13060, 17701, 20995, 27512, 32132, 38453, 45779, 57440, 64664, 77689, 89935, 104704, 117948, 141525, 154755, 183616, 205472, 231113, 258959, 290564, 314720, 364041
Offset: 1

Views

Author

Vladeta Jovovic, Oct 28 2001

Keywords

Comments

a(n) is also the entrywise 1-norm of the n X n LCM matrix.

Crossrefs

Programs

  • Mathematica
    Table[nn = n;Total[Level[Table[Table[LCM[i, j], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 37}] (* Geoffrey Critzer, Jan 14 2015 *)
  • PARI
    { a=0; for (n=1, 1000, a+=n*sum(k=1, n, n/gcd(n, k)); write("b064951.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 01 2009

Formula

a(n) = a(n-1) + 2*A051193(n) - n = a(n-1) + n*A057660(n) = Sum_{1 <= i <= j <= n} (j^2/gcd(i, j)). - Henry Bottomley, Oct 29 2001
a(n) ~ 3 * zeta(3) * n^4 / (2*Pi^2). - Vaclav Kotesovec, May 29 2021