cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065017 Primes of the form p*q + p + q, where (p, q=p+2) are twin primes.

Original entry on oeis.org

23, 47, 167, 359, 1847, 3719, 10607, 19319, 97967, 177239, 273527, 657719, 1042439, 1104599, 1329407, 1515359, 1745039, 2042039, 4464767, 5013119, 5148359, 9740639, 11095559, 11377127, 12538679, 16024007, 16410599, 16752647
Offset: 1

Views

Author

Stephan Wagler (stephanwagler(AT)aol.com), Nov 01 2001

Keywords

Comments

The resulting prime can never be a twin prime since the odd number preceding it is divisible by three and the following odd number is a perfect square.

Examples

			(3*5) + (3+5) = 23.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; k = 1; Do[k = NextPrim[k]; If[ PrimeQ[k + 2], p = k*(k + 2) + 2k + 2; If[ PrimeQ[p], Print[p]]], {n, 1, 700} ]
    f[n_]:=Module[{x=Total[n]+Times@@n},If[PrimeQ[x],x,0]]; Select[f/@ (Select[Partition[Prime[Range[700]],2,1],Last[#]-First[#]==2&]), #!=0&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    { n=p=0; for (m=1, 10^9, p=nextprime(p + 1); if (isprime(q=p + 2) && isprime(a=p*q + p + q), write("b065017.txt", n++, " ", a); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 03 2009

Formula

p^2 + 4*p + 2.

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Oct 03 2009