cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065018 a(n) = Sum_{d|n} sigma(d)^2.

Original entry on oeis.org

1, 10, 17, 59, 37, 170, 65, 284, 186, 370, 145, 1003, 197, 650, 629, 1245, 325, 1860, 401, 2183, 1105, 1450, 577, 4828, 998, 1970, 1786, 3835, 901, 6290, 1025, 5214, 2465, 3250, 2405, 10974, 1445, 4010, 3349, 10508, 1765, 11050, 1937, 8555, 6882
Offset: 1

Views

Author

Vladeta Jovovic, Nov 19 2001

Keywords

Crossrefs

Programs

  • PARI
    { for (n=1, 1000, a=sumdiv(n, d, sigma(d)^2); write("b065018.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)^2*x^k/(1-x^k))) \\ Seiichi Manyama, May 08 2021

Formula

Dirichlet convolution of A072861 and A000012. Dirichlet g.f.: zeta^2(s)*zeta^2(s-1)*zeta(s-2)/zeta(2s-2). - R. J. Mathar, Feb 03 2011
Sum_{k=1..n} a(k) ~ 5 * Zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Feb 01 2019
From Seiichi Manyama, May 08 2021: (Start)
G.f.: Sum_{k >= 1} sigma(k)^2 * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p+1)^2. (End)