cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A065060 Primes p such that prime(p) - pi(p) is a prime.

Original entry on oeis.org

2, 3, 7, 19, 79, 101, 113, 163, 173, 199, 223, 239, 251, 263, 311, 349, 443, 463, 577, 593, 641, 659, 743, 839, 881, 1033, 1097, 1109, 1151, 1373, 1399, 1429, 1439, 1459, 1627, 1693, 1831, 1871, 2029, 2069, 2137, 2237, 2287, 2423, 2473, 2617, 2687, 2713
Offset: 1

Views

Author

Robert G. Wilson v, Nov 06 2001

Keywords

Crossrefs

Cf. A000040 (primes), A000720 (pi), A065046 (prime(n) - pi(n) is a prime).

Programs

  • Maple
    with(numtheory): A065060:=n->`if`(isprime(n) and isprime(ithprime(n)-pi(n)), n, NULL): seq(A065060(n), n=1..10^4); # Wesley Ivan Hurt, Feb 09 2017
  • Mathematica
    Prime[ Select[ Range[500], PrimeQ[ Prime[ Prime[ # ]] - PrimePi[ Prime[ # ]]] & ]]
  • PARI
    { n=0; default(primelimit, 4294965247); for (m=1, 10^9, p=prime(m); if (isprime(prime(p) - primepi(p)), write("b065060.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 05 2009
Showing 1-1 of 1 results.