A065060 Primes p such that prime(p) - pi(p) is a prime.
2, 3, 7, 19, 79, 101, 113, 163, 173, 199, 223, 239, 251, 263, 311, 349, 443, 463, 577, 593, 641, 659, 743, 839, 881, 1033, 1097, 1109, 1151, 1373, 1399, 1429, 1439, 1459, 1627, 1693, 1831, 1871, 2029, 2069, 2137, 2237, 2287, 2423, 2473, 2617, 2687, 2713
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory): A065060:=n->`if`(isprime(n) and isprime(ithprime(n)-pi(n)), n, NULL): seq(A065060(n), n=1..10^4); # Wesley Ivan Hurt, Feb 09 2017
-
Mathematica
Prime[ Select[ Range[500], PrimeQ[ Prime[ Prime[ # ]] - PrimePi[ Prime[ # ]]] & ]]
-
PARI
{ n=0; default(primelimit, 4294965247); for (m=1, 10^9, p=prime(m); if (isprime(prime(p) - primepi(p)), write("b065060.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Oct 05 2009