cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065094 a(1) = 1, a(n+1) is the sum of a(n) and floor( arithmetic mean of a(1) ... a(n) ).

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 106, 136, 173, 218, 273, 341, 423, 522, 641, 784, 955, 1158, 1399, 1685, 2023, 2421, 2889, 3437, 4079, 4828, 5701, 6716, 7893, 9257, 10834, 12655, 14754, 17169, 19944, 23128, 26775, 30948, 35716, 41157
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

It seems that a(n) is asymptotic to C*BesselI(0,2*sqrt(n)) where C is a constant C = 0.44... and BesselI(b,x) is the modified Bessel function of the first kind. Can someone prove this?
Numerically, a(n) ~ c * exp(2*sqrt(n)) / n^(1/4), where c = 0.12571987512700920098166979884420897638511306007242... It follows that the constant above is equal to C = 0.445665353608456118285630970456186510059368576678... - Vaclav Kotesovec, Oct 12 2024
A241772(n) = a(n+1) - a(n) = (Sum_{1..n} a(k)) / n. - Reinhard Zumkeller, Apr 28 2014

Examples

			a(5) = a(4) + floor((a(1)+a(2)+a(3)+a(4))/4) = 5 + floor((1+2+3+5)/4) = 5 + floor(11/4) = 5 + 2 = 7.
		

Crossrefs

Programs

  • Haskell
    a065094 n = a065094_list !! (n-1)
    a065094_list = 1 : f 1 1 1 where
       f k s x = y : f (k + 1) (s + y) y where y = x + div s k
    -- Reinhard Zumkeller, Apr 28 2014
  • Maple
    a[1] := 1: summe := 0: flip := 1: for j from 1 to 100 do: print (j, a[flip]); summe := summe + a[flip]: a[1-flip] := a[flip] + floor(summe/j): flip := 1-flip: od:
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Floor[ Sum[ a[i], {i, 1, n - 1} ]/(n - 1) ]; Table[ a[n], {n, 1, 47} ]
    Nest[Append[#, Last[#]+Floor[Mean[#]]]&, {1}, 46] (* James C. McMahon, Oct 11 2024 *)
  • PARI
    { for (n=1, 1000, if (n==1, s=0; a=1, s+=a; a+=s\(n - 1)); write("b065094.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009
    

Formula

a(1) = 1, a(n+1) = a(n) + floor((a(1) + a(2) + ... + a(n))/n).