cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A241772 First differences of A065094 and also arithmetic means of initial terms of A065094.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 24, 30, 37, 45, 55, 68, 82, 99, 119, 143, 171, 203, 241, 286, 338, 398, 468, 548, 642, 749, 873, 1015, 1177, 1364, 1577, 1821, 2099, 2415, 2775, 3184, 3647, 4173, 4768, 5441, 6201, 7058, 8025, 9113, 10337, 11713, 13258
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 28 2014

Keywords

Comments

a(n) = A065094(n+1) - A065094(n) = (Sum_{k=1..n} A065094(k)) / n.

Crossrefs

Cf. A065094.

Programs

  • Haskell
    a241772 n = a241772_list !! (n-1)
    a241772_list = zipWith (-) (tail a065094_list) a065094_list

A065095 a(1) = 1, a(n+1) is the sum of a(n) and ceiling( arithmetic mean of a(1) ... a(n) ).

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 23, 33, 46, 62, 83, 110, 144, 186, 238, 303, 383, 481, 600, 744, 918, 1128, 1380, 1681, 2039, 2464, 2968, 3563, 4264, 5088, 6054, 7184, 8503, 10040, 11827, 13901, 16304, 19082, 22289, 25986, 30240, 35128, 40736, 47161, 54512
Offset: 1

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

It seems that a(n) is asymptotic to C*BesselI(0,2*sqrt(n)) where C is a constant C = 0.78... and BesselI(b,x) is the modified Bessel function of the first kind. Can someone prove this?
Numerically, a(n) ~ c * exp(2*sqrt(n)) / n^(1/4), where c = 0.2214496835182522607818590241239262909281832289078... It follows that the constant above is equal to C = 0.78501868866746800511978860290796656518270697588... - Vaclav Kotesovec, Oct 12 2024

Examples

			a(5) = a(4) + ceiling((a(1)+a(2)+a(3)+a(4))/4) = 7 + ceiling((1+2+4+7)/4) = 7 + floor(14/4) = 7 + 4 = 11.
		

Crossrefs

Programs

  • Maple
    a[1] := 1: summe := 0: flip := 1: for j from 1 to 100 do: print (j, a[flip]); summe := summe + a[flip]: a[1-flip] := a[flip] + ceil(summe/j): flip := 1-flip: od:
  • Mathematica
    a[1] = 1; a[n_] := a[n] = a[n - 1] + Ceiling[ Sum[ a[i], {i, 1, n - 1} ]/(n - 1) ]; Table[ a[ n], {n, 1, 45} ]
    Nest[Append[#,Last[#]+Ceiling[Mean[#]]]&,{1},44] (* James C. McMahon, Oct 10 2024 *)
  • PARI
    { for (n=1, 1000, if (n==1, s=0; a=1, s+=a; a+=ceil(s/(n - 1))); write("b065095.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 06 2009

Formula

a(1) = 1, a(n+1) = a(n) + ceiling((a(1) + a(2) + ... + a(n))/n).

A114829 Each term is previous term plus floor of geometric mean of all previous terms.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 44, 53, 63, 74, 87, 101, 117, 135, 155, 177, 201, 227, 256, 287, 321, 358, 398, 442, 489, 540, 595, 654, 717, 785, 858, 936, 1019, 1107, 1201, 1301, 1408, 1521, 1641, 1768, 1903, 2046, 2197, 2356, 2524, 2701, 2888, 3085, 3292, 3510, 3739, 3979, 4231
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

What is this sequence, asymptotically?

Examples

			a(2) = 1 + floor(1^(1/1)) = 1 + 1 = 2.
a(3) = 2 + floor[(1*2)^(1/2)] = 2 + floor[sqrt(2)] = 2 + 1 = 3.
a(4) = 3 + floor[(1*2*3)^(1/3)] = 3 + floor[CubeRoot(6)] = 3 + 1 = 4.
a(5) = 4 + floor[(1*2*3*4)^(1/4)] = 4 + floor[4thRoot(24)] = 4 + 2 = 6.
a(6) = 6 + floor[(1*2*3*4*6)^(1/5)] = 6 + floor[5thRoot(144)] = 6 + 2 = 8.
a(7) = 8 + floor[(1*2*3*4*6*8)^(1/6)] = 6 + floor[6thRoot(1152)] = 8 + 3 = 11.
		

Crossrefs

Programs

  • Maple
    A114829 := proc(n)
        option remember;
        if n= 1 then
            1;
        else
            mul(procname(i),i=1..n-1) ;
            procname(n-1)+floor(root[n-1](%)) ;
        end if;
    end proc:
    seq(A114829(n),n=1..60) ; # R. J. Mathar, Jun 23 2014
  • Mathematica
    s={1};Do[AppendTo[s,Last[s]+Floor[GeometricMean[s]]],{n,58}];s (* James C. McMahon, Aug 19 2024 *)

Formula

a(1) = 1, a(n+1) = a(n) + floor(GeometricMean[a(1),a(2),...,a(n)]).
a(n+1) = a(n) + floor((Product_{k=1..n} a(k))^(1/n)).

A376995 a(n) = floor(b(n)), where b(1) = 1 and b(n) = b(n-1) + Sum_{k=1..n-1} b(k)/(n-1).

Original entry on oeis.org

1, 2, 3, 5, 8, 12, 18, 25, 35, 48, 64, 85, 111, 143, 184, 234, 296, 371, 463, 575, 709, 872, 1066, 1298, 1575, 1903, 2293, 2752, 3294, 3931, 4677, 5550, 6570, 7757, 9138, 10741, 12597, 14744, 17222, 20078, 23365, 27141, 31474, 36438, 42118, 48607, 56012, 64451, 74057
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 12 2024

Keywords

Crossrefs

Programs

  • Mathematica
    b[1]=1; b[n_]:=b[n] = b[n-1] + Sum[b[i], {i, 1, n-1}]/(n-1); Table[b[n], {n, 1, 50}] // Floor
    Clear[b]; RecurrenceTable[{b[n] == 2*b[n-1] - (1-1/(n-1))*b[n-2], b[1]==1, b[2]==2}, b, {n, 1, 50}] // Floor
    Table[HypergeometricPFQ[{n}, {1}, 1]/E, {n, 1, 50}] // Floor
    Rest[CoefficientList[Series[x*E^(x/(1-x))/(1-x), {x, 0, 50}], x]] // Floor
    nmax = 50; Rest[CoefficientList[Series[Integrate[Exp[t]*BesselI[0, 2*Sqrt[t]], {t, 0, x}], {x, 0, nmax}], x] * Range[0, nmax]!] // Floor
    Table[LaguerreL[n-1, -1], {n, 1, 50}] // Floor

Formula

a(n) = floor(b(n)), where b(n) = 2*b(n-1) - (1 - 1/(n-1))*b(n-2), b(1)=1, b(2)=2.
a(n) ~ exp(2*sqrt(n) - 1/2) / (2*sqrt(Pi)*n^(1/4)).
a(n) ~ exp(-1/2) * BesselI(0, 2*sqrt(n)).
a(n) = floor(A160617(n-1)/A160618(n-1)).

A114830 Each term is previous term plus ceiling of geometric mean of all previous terms.

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 24, 31, 39, 48, 59, 71, 85, 101, 119, 139, 162, 187, 215, 246, 280, 318, 359, 404, 453, 507, 565, 628, 697, 771, 851, 937, 1029, 1128, 1234, 1348, 1470, 1600, 1738, 1885, 2042, 2209, 2386, 2574, 2773, 2984, 3207, 3443, 3692, 3955, 4232, 4524, 4831, 5154, 5494, 5851, 6226, 6620
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

What is this sequence, asymptotically?

Examples

			a(2) = 1 + ceiling(1^(1/1)) = 1 + 1 = 2.
a(3) = 2 + ceiling[(1*2)^(1/2)] = 2 + ceiling[sqrt(2)] = 2 + 2 = 4.
a(4) = 4 + ceiling[(1*2*4)^(1/3)] = 4 + ceiling[CubeRoot(8)] = 4 + 2 = 6.
a(5) = 6 + ceiling[(1*2*4*6)^(1/4)] = 6 + floor[4thRoot(48)] = 6 + 3 = 9.
a(6) = 9 + ceiling[(1*2*4*6*9)^(1/5)] = 9 + ceiling[5thRoot(432)] = 9 + 4 = 13.
a(7) = 13 + ceiling[(1*2*4*6*9*13)^(1/6)] = 6 + floor[6thRoot(5616)] = 13 + 5 = 18.
a(25) = 359 + ceiling[(1 * 2 * 4 * 6 * 9 * 13 * 18 * 24 * 31 * 39 * 48 * 59 * 71 * 85 * 101 * 119 * 139 * 162 * 187 * 215 * 246 * 280 * 318 * 359)^(1/24)] = 359 + ceiling[44.8074289] = 359 + 45 = 404.
		

Crossrefs

Programs

  • Maple
    A114830 := proc(n)
        option remember;
        if n= 1 then
            1;
        else
            mul(procname(i),i=1..n-1) ;
            procname(n-1)+ceil(root[n-1](%)) ;
        end if;
    end proc:
    seq(A114830(n),n=1..60) ; # R. J. Mathar, Jun 23 2014
  • Mathematica
    Nest[Append[#,Last[#]+Ceiling@GeometricMean[#]]&,{1},58] (* James C. McMahon, Aug 20 2024 *)

Formula

a(1) = 1, a(n+1) = a(n) + ceiling(GeometricMean[a(1),a(2),...,a(n)]).
a(n+1) = a(n) + ceiling((Product_{k=1..n} a(k))^(1/n)).

A114831 Each term is previous term plus floor of harmonic mean of two previous terms.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 24, 41, 71, 122, 211, 365, 632, 1094, 1895, 3282, 5684, 9845, 17052, 29534, 51154, 88601, 153461, 265802, 460382, 797405, 1381145, 2392213, 4143434, 7176638, 12430301, 21529913, 37290903, 64589738, 111872708, 193769214, 335618123, 581307641, 1006854369, 1743922922
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y].
What is this sequence, asymptotically?

Examples

			a(3) = 2 + floor(2*1*2/(1+2)) = 2 + floor(4/3) = 2 + 1 = 3.
a(4) = 3 + floor(2*2*3/(2+3)) = 3 + floor(12/5) = 3 + 2 = 5.
a(5) = 5 + floor(2*3*5/(3+5)) = 5 + floor(30/8) = 5 + 3 = 8.
a(6) = 8 + floor(2*5*8/(5+8)) = 8 + floor(80/13) = 8 + 6 = 14.
a(7) = 14 + floor(2*8*14/(8+14)) = 14 + floor(112/11) = 14 + 10 = 24.
		

Crossrefs

Programs

  • Maple
    hMean := proc(a,b)
        2*a*b/(a+b) ;
    end proc:
    A114831 := proc(n)
        option remember;
        if n<= 2 then
            n;
        else
            procname(n-1)+floor(hMean(procname(n-1),procname(n-2))) ;
        end if;
    end proc:
    seq(A114831(n),n=1..60) ; # R. J. Mathar, Jun 23 2014

Formula

a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(HarmonicMean[a(n),a(n-1)]). a(n+1) = a(n) + floor[(2*a(n)*a(n-1))/(a(n)+a(n-1))].

Extensions

Corrected by R. J. Mathar, Jun 23 2014
Typo in a(40) corrected by Seth A. Troisi, May 13 2022

A114833 Each term is previous term plus ceiling of root mean square of two previous terms.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 28, 51, 93, 168, 304, 550, 995, 1799, 3253, 5882, 10635, 19229, 34767, 62861, 113656, 205497, 371550, 671782, 1214618, 2196094, 3970654, 7179153, 12980288, 23469047, 42433278, 76721609, 138716724, 250807167, 453472612, 819902445, 1482426947, 2680306255, 4846135343
Offset: 0

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Examples

			a(3) = 2 + ceiling[sqrt[(1^2 + 2^2)/2]] = 2 + ceiling[Sqrt[5/2]] = 2 + 2 = 4.
a(4) = 4 + ceiling[sqrt[(2^2 + 4^2)/2]] = 4 + ceiling[Sqrt[20/2]] = 4 + 4 = 8.
a(5) = 8 + ceiling[sqrt[(4^2 + 8^2)/2]] = 8 + ceiling[Sqrt[80/2]] = 8 + 7 = 15.
a(6) = 15 + ceiling[sqrt[(8^2 + 15^2)/2]] = 15 + ceiling[Sqrt[289/2]] = 15 + 13 = 28.
a(7) = 28 + ceiling[sqrt[(15^2 + 28^2)/2]] = 28 + ceiling[Sqrt[1009/2]] = 28 + 23 = 51.
a(8) = 51 + ceiling[sqrt[(28^2 + 51^2)/2]] = 51 + ceiling[Sqrt[3385/2]] = 51 + 42 = 93.
a(9) = 93 + ceiling[sqrt[(51^2 + 93^2)/2]] = 93 + ceiling[Sqrt[11250/2]] = 93 + 75 = 168 [the 75 is an exact value].
a(10) = 168 + ceiling[sqrt[(93^2 + 168^2)/2]] = 168 + ceiling[Sqrt[36873/2]] = 168 + 136 = 304.
a(11) = 304 + ceiling[sqrt[(168^2 + 304^2)/2]] = 304 + ceiling[Sqrt[120640/2]] = 304 + 246 = 550.
a(12) = 550 + ceiling[sqrt[(304^2 + 550^2)/2]] = 550 + ceiling[Sqrt[394916/2]] = 550 + 445 = 995.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = a[n - 1] + Ceiling[ Sqrt[(a[n - 1]^2 + a[n - 2]^2)/2]]; a[0] = 0; a[1] = 1; Array[a, 39, 0] (* Robert G. Wilson v, Jun 22 2014 *)
    nxt[{a_,b_}]:={b,b+Ceiling[Sqrt[(a^2+b^2)/2]]}; Transpose[NestList[nxt,{0,1},40]][[1]] (* Harvey P. Dale, May 12 2015 *)

Formula

a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + ceiling(RMS[a(n),a(n-1)]). a(n+1) = a(n) + ceiling[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].
It can easily be proved via induction that a(n)<=2^n. On the other hand we can derive a lower bound: We derive another sequence of the form b(n) = a*c^n, where "a" and "c" are real numbers. If b(1)<=a(1) and b(2)<=a(2) and a(n+1) = a(n)+Ceiling(Sqrt((a(n)^2+a(n-1)^2)/2)) >= b(n)+Sqrt((b(n)^2+b(n-1)^2)/2) >= b(n+1) then, via induction we can safely conclude that a(n)>=b(n). With this method we can derive that a(n) >= 1.80805^(n-1) (where 1.80... is the positive solution of x^2 = x+Sqrt((x^2+1)/2)). Hence we have 1.80805 < a(n)^(1/n) < 2. Can these bounds be improved? - Stefan Steinerberger, Feb 21 2006

Extensions

a(0) and a(13) onward from Robert G. Wilson v, Jun 22 2014

A114834 Each term is previous term plus floor of root mean square of two previous terms.

Original entry on oeis.org

1, 2, 3, 5, 9, 16, 28, 50, 90, 162, 293, 529, 956, 1728, 3124, 5648, 10211, 18462, 33380, 60352, 109119, 197293, 356716, 644961, 1166123, 2108412, 3812120, 6892514, 12462029, 22532007, 40739059, 73658371, 133178227, 240793271, 435366958, 787166465
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

What is this sequence and the ratio of adjacent terms, asymptotically? Primes in this sequence include 2, 3, 5, 293. Squares in this sequence include 9, 16, 529.

Examples

			a(3) = 2 + floor[sqrt[(1^2 + 2^2)/2]] = 2 + floor[Sqrt[5/2]] = 2 + 1 = 3.
a(4) = 3 + floor[sqrt[(2^2 + 3^2)/2]] = 4 + floor[Sqrt[13/2]] = 3 + 2 = 5.
a(5) = 5 + floor[sqrt[(3^2 + 5^2)/2]] = 8 + floor[Sqrt[34/2]] = 5 + 4 = 9.
a(6) = 9 + floor[sqrt[(5^2 + 9^2)/2]] = 15 + floor[Sqrt[106/2]] = 9 + 7 = 16.
a(7) = 16 + floor[sqrt[(9^2 + 16^2)/2]] = 15 + floor[Sqrt[337/2]] = 16 + 12 = 28.
a(8) = 28 + floor[sqrt[(16^2 + 28^2)/2]] = 15 + floor[Sqrt[1040/2]] = 28 + 22 = 50.
a(9) = 50 + floor[sqrt[(28^2 + 50^2)/2]] = 50 + floor[Sqrt[3284/2]] = 50 + 40 = 90.
a(10) = 90 + floor[sqrt[(50^2 + 90^2)/2]] = 50 + floor[Sqrt[10600/2]] = 90 + 72 = 162.
a(11) = 162 + floor[sqrt[(90^2 + 162^2)/2]] = 50 + floor[Sqrt[34344/2]] = 162 + 131 = 293.
a(12) = 293 + floor[sqrt[(162^2 + 293^2)/2]] = 293 + floor[Sqrt[112093/2]] = 293 + 236 = 529.
		

Crossrefs

Programs

  • Maple
    rms := proc(a,b)
        sqrt((a^2+b^2)/2) ;
    end proc:
    A114834 := proc(n)
        option remember;
        if n<= 2 then
            n;
        else
            procname(n-1)+floor(rms(procname(n-1),procname(n-2))) ;
        end if;
    end proc: # R. J. Mathar, Jun 23 2014

Formula

a(1) = 1, a(2) = 2, for n>2: a(n+1) = a(n) + floor(RMS[a(n),a(n-1)]). a(n+1) = a(n) + floor[Sqrt[[a(n)^2]+[a(n-1)^2]/2]].

A375606 a(1) = 1; a(n+1) = a(n) + floor(harmonic mean of previous terms).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 14, 17, 20, 23, 27, 31, 35, 40, 45, 50, 55, 61, 67, 73, 80, 87, 94, 102, 110, 118, 126, 135, 144, 153, 163, 173, 183, 193, 204, 215, 226, 238, 250, 262, 275, 288, 301, 314, 328, 342, 356, 371, 386, 401, 417, 433, 449, 465, 482, 499, 516
Offset: 1

Views

Author

James C. McMahon, Aug 20 2024

Keywords

Examples

			a(6) = 5 + floor(harmonic mean(1,2,3,4,5)) = 5 + floor(300/137) = 7.
		

Crossrefs

Programs

  • Mathematica
    Nest[Append[#,Last[#]+Floor@HarmonicMean[#]]&,{1},58]

A114832 Each term is previous term plus ceiling of harmonic mean of two previous terms.

Original entry on oeis.org

1, 2, 4, 7, 13, 23, 40, 70, 121, 210, 364, 631, 1093, 1894, 3281, 5683, 9844, 17050, 29532, 51151, 88597, 153455, 265792, 460366, 797377, 1381098, 2392132, 4143295, 7176398, 12429886, 21529195, 37289660, 64587586, 111868981, 193762759
Offset: 1

Views

Author

Jonathan Vos Post, Feb 19 2006

Keywords

Comments

For two numbers x and y, HarmonicMean[x,y] = [(GeometricMean[x,y])^2] / Arithmetic Mean[x,y]. What is this sequence, asymptotically? a(n) is prime for n = 2, 4, 5, 6, 12, ... are there an infinite number of prime values?

Examples

			a(3) = 2 + ceiling(2*1*2/(1+2)) = 2 + ceiling(4/3) = 2 + 2 = 4.
a(4) = 4 + ceiling(2*2*4/(2+4)) = 4 + ceiling(16/6) = 4 + 3 = 7.
a(5) = 7 + ceiling(2*4*7/(4+7)) = 7 + ceiling(56/8) = 7 + 6 = 13.
a(6) = 13 + ceiling(2*7*13/(7+13)) = 13 + ceiling(182/13) = 13 + 10 = 23.
a(7) = 23 + ceiling(2*13*23/(13+23)) = 23 + ceiling(598/36) = 23 + 17 = 40.
a(8) = 40 + ceiling(2*23*40/(23+40)) = 40 + ceiling(1840/63) = 40 + 30 = 70.
a(9) = 70 + ceiling(2*40*70/(40+70)) = 70 + ceiling(5600/110) = 70 + 51 = 121.
a(10) = 121 + ceiling(2*70*121/(70+121)) = 121 + ceiling(16940/191) = 121 + 89 = 210.
a(11) = 210 + ceiling(2*121*210/(121+210)) = 121 + ceiling(50820/331) = 210 + 154 = 364.
a(12) = 364 + ceiling(2*210*364/(210+364)) = 364 + ceiling(152880/574) = 364 + 267 = 631.
		

Crossrefs

Programs

  • Maple
    a[1]:=1: a[2]:=2: for n from 2 to 40 do a[n+1]:=a[n]+ceil((2*a[n]*a[n-1])/(a[n]+a[n-1])) od: seq(a[n],n=1..40); # Emeric Deutsch, Mar 03 2006

Formula

a(1) = 1, a(2) = 2, for n > 2: a(n+1) = a(n) + ceiling(HarmonicMean(a(n), a(n-1))). a(n+1) = a(n) + ceiling((2*a(n)*a(n-1))/(a(n) + a(n-1))).

Extensions

More terms from Emeric Deutsch, Mar 03 2006
Showing 1-10 of 10 results.