A065108 Positive numbers expressible as a product of Fibonacci numbers.
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21, 24, 25, 26, 27, 30, 32, 34, 36, 39, 40, 42, 45, 48, 50, 52, 54, 55, 60, 63, 64, 65, 68, 72, 75, 78, 80, 81, 84, 89, 90, 96, 100, 102, 104, 105, 108, 110, 117, 120, 125, 126, 128, 130, 135, 136, 144, 150, 156, 160, 162
Offset: 1
Keywords
Examples
52 = 2 * 2 * 13 is the product of Fibonacci numbers 2, 2 and 13.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Ćukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025).
- Clemens Heuberger and Stephan Wagner, On the monoid generated by a Lucas sequence, arXiv:1606.02639 [math.NT], 2016.
- David A. Corneth, Table of 10000*i, a(10000*i), log(a(10000*i))/log(10000*i) for i = 1..470
Crossrefs
Programs
-
Maple
with(combinat): A000045:=proc(n) options remember: RETURN(fibonacci(n)): end: mulfib:=proc(m,i) local j,q,f: f:=0: for j from i by -1 to 3 while(f=0) do if(irem(m, A000045(j))=0) then q:=iquo(m, A000045(j)): if(q=1) then RETURN(1) else f:=mulfib(q,j) fi fi od: RETURN(f): end: for i from 3 to 12 do for n from A000045(i) to A000045(i+1)-1 do m:=mulfib(n,i): if m=1 then printf("%d, ",n) fi od od: # C. Ronaldo
-
Mathematica
nn = 1000; k = 1; fib = {}; While[k++; f = Fibonacci[k]; f <= nn, AppendTo[fib, f]]; s = fib; While[s2 = Select[Union[s, Flatten[Outer[Times, fib, s]]], # <= nn &]; Length[s2] > Length[s], s = s2]; s (* T. D. Noe, Jul 17 2012 *)
-
PARI
list(lim)=if(lim<7, return([1..lim\1])); my(v=List([1]), F=List([2,3]), curfib, t, idx, newidx); while((t=F[#F]+F[#F-1])<=lim, listput(F,t)); F=setminus(Set(F), [8,144]); for(i=1,#F, curfib=F[i]; idx=1; while(v[idx]*curfib<=lim, newidx=#v+1; for(j=idx,#v, t=curfib*v[j]; if(t<=lim, listput(v,t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Jun 15 2017
Formula
As Charles R Greathouse IV recently remarked, it would be good to have an asymptotic formula for this sequence. - N. J. A. Sloane, Jul 22 2012
Extensions
More terms from John W. Layman, Nov 27 2001
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005
Comments