cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065108 Positive numbers expressible as a product of Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21, 24, 25, 26, 27, 30, 32, 34, 36, 39, 40, 42, 45, 48, 50, 52, 54, 55, 60, 63, 64, 65, 68, 72, 75, 78, 80, 81, 84, 89, 90, 96, 100, 102, 104, 105, 108, 110, 117, 120, 125, 126, 128, 130, 135, 136, 144, 150, 156, 160, 162
Offset: 1

Views

Author

Joseph L. Pe, Nov 21 2001

Keywords

Comments

There are infinitely many triples of consecutive terms of this sequence that are consecutive integers, see A065885. - John W. Layman, Nov 27 2001
Carmichael's theorem implies that 8 and 144 are the only Fibonacci numbers that are products of other Fibonacci numbers, cf. A235383. - Robert C. Lyons, Jan 13 2013

Examples

			52 = 2 * 2 * 13 is the product of Fibonacci numbers 2, 2 and 13.
		

Crossrefs

Cf. A000045, A065885. Complement of A065105.
Cf. A049997 and A094563: F(i)*F(j) and F(i)*F(j)*F(k) respectively.
Subsequence of A178772.

Programs

  • Maple
    with(combinat): A000045:=proc(n) options remember: RETURN(fibonacci(n)): end: mulfib:=proc(m,i) local j,q,f: f:=0: for j from i by -1 to 3 while(f=0) do if(irem(m, A000045(j))=0) then q:=iquo(m, A000045(j)): if(q=1) then RETURN(1) else f:=mulfib(q,j) fi fi od: RETURN(f): end: for i from 3 to 12 do for n from A000045(i) to A000045(i+1)-1 do m:=mulfib(n,i): if m=1 then printf("%d, ",n) fi od od: # C. Ronaldo
  • Mathematica
    nn = 1000; k = 1; fib = {}; While[k++; f = Fibonacci[k]; f <= nn, AppendTo[fib, f]]; s = fib; While[s2 = Select[Union[s, Flatten[Outer[Times, fib, s]]], # <= nn &]; Length[s2] > Length[s], s = s2]; s (* T. D. Noe, Jul 17 2012 *)
  • PARI
    list(lim)=if(lim<7, return([1..lim\1])); my(v=List([1]), F=List([2,3]), curfib, t, idx, newidx); while((t=F[#F]+F[#F-1])<=lim, listput(F,t)); F=setminus(Set(F), [8,144]); for(i=1,#F, curfib=F[i]; idx=1; while(v[idx]*curfib<=lim, newidx=#v+1; for(j=idx,#v, t=curfib*v[j]; if(t<=lim, listput(v,t))); idx=newidx)); Set(v) \\ Charles R Greathouse IV, Jun 15 2017

Formula

As Charles R Greathouse IV recently remarked, it would be good to have an asymptotic formula for this sequence. - N. J. A. Sloane, Jul 22 2012

Extensions

More terms from John W. Layman, Nov 27 2001
More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 02 2005