cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A065133 Remainder when n-th prime is divided by the number of primes not exceeding n.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 5, 1, 5, 5, 3, 5, 3, 7, 1, 7, 2, 8, 7, 2, 4, 8, 9, 3, 6, 10, 5, 7, 6, 8, 1, 7, 11, 5, 10, 12, 9, 11, 1, 3, 1, 13, 2, 4, 8, 14, 1, 11, 1, 7, 13, 15, 5, 9, 13, 5, 1, 5, 7, 11, 8, 14, 5, 7, 13, 19, 10, 16, 1, 5, 11, 19, 5, 13, 1, 3, 17, 19, 2, 6, 12, 20, 5, 7, 11, 23
Offset: 2

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Examples

			n = 2: pi(2) = 1, prime(2) = 3, 3 mod 1 = 0, the first term = a(2);
n = 100: pi(100) = 25, prime(100) = 541, 541 mod 25 = 16 = a(100). [corrected by _Jon E. Schoenfield_, Jun 18 2018]
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[n],PrimePi[n]],{n,2,100}] (* Harvey P. Dale, Nov 28 2013 *)
  • PARI
    { for (n=2, 1000, write("b065133.txt", n, " ", prime(n)%primepi(n)) ) } \\ Harry J. Smith, Oct 11 2009

Formula

a(n) = prime(n) mod pi(n) = A000040(n) mod A000720(n), n > 1.

A065864 Remainder when n is divided by the number of nonprimes not exceeding n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 21
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Examples

			For n=100, pi(100)=25, so a(100) = 100 mod (100-25) = 25.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[n, n - PrimePi@ n], {n, 78}] (* or *)
    Table[Mod[n, Count[Range@ n, k_ /; ! PrimeQ@ k]], {n, 78}] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    { for (n = 1, 1000, a=n%(n - primepi(n)); write("b065864.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = n mod (n-pi(n)) = n mod (n-A000720(n)) = n mod A062298(n).

A073436 Smallest k such that k mod pi(k) = n.

Original entry on oeis.org

2, 3, 5, 7, 16, 21, 22, 25, 26, 29, 32, 65, 66, 70, 77, 78, 82, 86, 87, 88, 92, 93, 94, 95, 99, 106, 116, 117, 118, 119, 218, 219, 220, 221, 222, 247, 248, 249, 250, 255, 256, 261, 262, 267, 268, 289, 290, 291, 292, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306
Offset: 0

Views

Author

Labos Elemer, Jul 31 2002

Keywords

Comments

a(n) > a(n-1) except for 68, 180, 1051, 6454, 6456, 6459, 40073, 40078, ..., . - Robert G. Wilson v, Feb 24 2023

Examples

			Remainder 7 appears first as 25 mod pi(25) = 25 mod 9 = 7, so a(7) = 25.
		

Crossrefs

Programs

Formula

a(n) = Min{k: k mod A000720(k) = n} = Min{k: A065134(k) = n}.

Extensions

a(0) from Robert G. Wilson v, Feb 23 2023

A065863 Remainder when n-th prime is divided by the number of nonprimes not exceeding n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 3, 3, 5, 1, 2, 6, 3, 2, 3, 9, 6, 1, 11, 8, 9, 13, 14, 1, 16, 13, 12, 14, 13, 7, 5, 5, 1, 5, 1, 7, 7, 5, 5, 11, 7, 17, 13, 11, 7, 19, 25, 23, 19, 17, 17, 19, 23, 23, 23, 23, 19, 25, 23, 25, 29, 37, 35, 31, 29, 43, 43, 47, 43, 47, 47, 3, 2, 1, 53, 53, 55, 2, 3, 6, 1, 11, 6
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Examples

			For n=25, prime(25)=97, n - pi(n) = 25 - 9 = 16, a(25)=1 because 97 = 6*16 + 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[Prime[n],n-PrimePi[n]],{n,90}] (* Harvey P. Dale, Aug 04 2015 *)
  • PARI
    a(n) = { prime(n)%(n - primepi(n)) } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = prime(n) mod (n - pi(n)) = A000040(n) mod A062298(n).

A065859 Remainder when the n-th prime is divided by the n-th composite number.

Original entry on oeis.org

2, 3, 5, 7, 1, 1, 3, 4, 7, 11, 11, 16, 19, 19, 22, 1, 5, 5, 7, 7, 7, 11, 13, 17, 21, 23, 23, 23, 21, 23, 35, 35, 39, 39, 47, 47, 49, 53, 55, 2, 5, 1, 5, 4, 5, 4, 13, 19, 20, 19, 17, 17, 16, 23, 26, 29, 29, 28, 31, 29, 28, 35, 46, 47, 43, 44, 55, 58, 65, 64, 65, 65, 70, 73, 73, 71
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Examples

			n=100, p(100)=541, c(100)=133, a(100)=9 because 541 = 4*133 + 9.
		

Crossrefs

Programs

  • Mathematica
    a[n]=Mod[p(n), c(n)]=Mod[A000040(n), A002808(n)]
    With[{nn=80},Module[{prs=Prime[Range[nn]],comps},comps=Take[Complement[ Range[2,Prime[nn]+1],prs],Length[prs]];Mod[#[[1]],#[[2]]]&/@ Thread[ {prs,comps}]]] (* Harvey P. Dale, Apr 18 2012 *)
  • PARI
    Composite(n) = { local(k); k=n + primepi(n) + 1; while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k) } { for (n = 1, 1000, a=prime(n)%Composite(n); write("b065859.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 01 2009

A065136 Numbers n such that n = pi(n)*k + 1 for some k.

Original entry on oeis.org

3, 9, 11, 13, 28, 34, 37, 43, 121, 336, 341, 351, 356, 361, 1081, 1087, 1135, 3060, 3074, 3081, 3088, 3095, 8409, 8425, 8441, 8457, 8465, 8473, 23527, 23536, 24301, 64541, 64581, 64591, 64601, 64611, 64651, 64661, 64691, 64701, 64711, 64721
Offset: 1

Views

Author

Labos Elemer, Oct 15 2001

Keywords

Comments

Solutions to Mod[n,PrimePi[n]] = 1, i.e. A065134(n) = 1.

Examples

			n=28: Pi(28)=9 and 28=3*Pi(28)+1, so 28 is here; n=27 is present in A057809. A large proportion of A057809(m)+1 numbers (but not all of them) arise in this sequence. Numbers from A057809 arise in clusters [see grouping around 8450, 64650, 480900 etc.]
		

Crossrefs

A065862 Remainder when n-th composite number is divided by the number of nonprimes not exceeding n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 3, 1, 0, 2, 0, 1, 0, 7, 6, 7, 6, 8, 8, 7, 6, 7, 6, 6, 5, 4, 4, 6, 5, 6, 6, 5, 4, 3, 2, 4, 3, 2, 1, 2, 2, 4, 3, 2, 1, 2, 2, 1, 0, 0, 0, 1, 0, 38, 38, 39, 39, 40, 41, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 46, 47, 47, 48, 49, 49, 49, 51, 52, 52, 52, 54, 54, 54, 54, 54
Offset: 1

Views

Author

Labos Elemer, Nov 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{nn=150,cmps,len},cmps=Select[Range[nn],CompositeQ];len=Length[ cmps];Mod[#[[1]],#[[2]]-PrimePi[#[[2]]]]&/@Thread[{cmps,Range[len]}]] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    Composite(n) = { local(k); k=n + primepi(n) + 1; while (k != n + primepi(k) + 1, k = n + primepi(k) + 1); return(k) } { for (n = 1, 1000, a=Composite(n)%(n - primepi(n)); write("b065862.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009

Formula

a(n) = c(n) mod (n - pi(n)) = A002808(n) mod (n - A000720(n)) = A002808(n) mod A062298(n).

A072623 Numbers n such that A065863(n) = 1, i.e., prime(n) mod (n - Pi(n)) = 1.

Original entry on oeis.org

4, 5, 6, 11, 19, 25, 34, 36, 75, 82, 87, 90, 94, 237, 604, 609, 614, 1583, 1592, 10466, 10467, 10498, 10504, 10505, 70501, 70511, 180227, 180294, 180358, 180443, 180447, 466078, 8103422, 21058343, 21058649, 143052872, 143052877, 143053068
Offset: 1

Views

Author

Labos Elemer, Jun 26 2002

Keywords

Comments

A004648, A065134 and A065863 behave similarly; they grow relatively slowly and drop suddenly at unexpected values of n. Parity of A004648 behaves most regularly.
Each cluster of entries exceeds the previous cluster by a power of e.

Examples

			For the cluster started at n = 10466 the remainders of A065863(n) are as follows: {9089, 9092, 9117, 9127, 9148, 9159, 1, 1, 9180, 9183, 9182, 9179, 9172, 9169, 9168, 9177, 9176, 9178, 9183, 9192, 43}. It behaves like A004648 or A065134.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ Mod[ Prime[n], n-PrimePi[n]] == 1, Print[n]], {n, 1, 150000000}]
    (* Second program: *)
    Position[Table[Mod[Prime[n], n - PrimePi[n]], {n, 10^6}], 1] // Flatten (* Michael De Vlieger, Jul 30 2017 *)

Extensions

Edited by Robert G. Wilson v, Jun 27 2002

A072624 a(n) = prime(n^2) mod n^2.

Original entry on oeis.org

0, 3, 5, 5, 22, 7, 31, 55, 14, 41, 56, 107, 164, 17, 77, 83, 145, 199, 271, 341, 437, 73, 100, 179, 262, 319, 416, 519, 594, 697, 846, 993, 25, 93, 131, 259, 369, 497, 575, 699, 879, 989, 1085, 1259, 1409, 1533, 1799, 1961, 2183, 2307, 2519, 23, 188, 329, 514
Offset: 1

Views

Author

Labos Elemer, Jun 28 2002

Keywords

Examples

			For n = 10: a(10) = prime(100) mod 100 = 541 mod 100 = 41.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Prime[n^2], n^2]; Array[a, 100] (* Amiram Eldar, Mar 17 2025 *)
  • PARI
    a(n) = prime(n^2) % (n^2); \\ Amiram Eldar, Mar 17 2025

Formula

a(n) = A004648(n^2).
Showing 1-9 of 9 results.