cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065164 Permutation t->t+1 of Z, folded to N.

Original entry on oeis.org

2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 28, 25, 30, 27, 32, 29, 34, 31, 36, 33, 38, 35, 40, 37, 42, 39, 44, 41, 46, 43, 48, 45, 50, 47, 52, 49, 54, 51, 56, 53, 58, 55, 60, 57, 62, 59, 64, 61, 66, 63, 68, 65, 70, 67, 72, 69, 74
Offset: 1

Views

Author

Antti Karttunen, Oct 19 2001

Keywords

Comments

Corresponds to simple periodic asynchronic site swap pattern ...111111... (tossing one ball from hand to hand forever).
This permutation consists of a single infinite cycle.
This is, starting at a(2) = 4, the same as the "increasing oscillating sequence" shown in Proposition 3.1, p.7 and plotted in the right of figure 1, of Vatter. The same paper, p.4, cites Comtet and uses without giving the A-number of A003319. Abstract: We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley-Wilf limit) at least lambda = approx 2.48187, the unique real root of x^5-2x^4-2x^2-2x-1, thereby establishing a conjecture of Albert and Linton. - Jonathan Vos Post, Jul 18 2008

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 819.

Crossrefs

Row 1 of A065167. Obtained by composing permutations A014681 and A065190. Inverse permutation: A065168.

Programs

  • Maple
    ss1 := [seq(PerSS(n,1), n=1..120)]; PerSS := (n,c) -> Z2N(N2Z(n)+c);
    N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
  • Mathematica
    Join[{2}, LinearRecurrence[{1, 1, -1}, {4, 1, 6}, 100]] (* Amiram Eldar, Aug 08 2023 *)

Formula

Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+1).
a(n) = n + 2*(-1^n) for n > 1. - Frank Ellermann, Feb 12 2002
a(n) = 2*n-a(n-1)-1, n>2. - Vincenzo Librandi, Dec 07 2010, corrected by R. J. Mathar, Dec 07 2010
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(3*x^3-5*x^2+2*x+2) / ((x-1)^2*(x+1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 1. - Amiram Eldar, Aug 08 2023