A065164 Permutation t->t+1 of Z, folded to N.
2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 28, 25, 30, 27, 32, 29, 34, 31, 36, 33, 38, 35, 40, 37, 42, 39, 44, 41, 46, 43, 48, 45, 50, 47, 52, 49, 54, 51, 56, 53, 58, 55, 60, 57, 62, 59, 64, 61, 66, 63, 68, 65, 70, 67, 72, 69, 74
Offset: 1
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 819.
Links
- Michael H. Albert, Robert Brignall, and Vincent Vatter, Large infinite antichains of permutations, arXiv:1212.3346 [math.CO], 2012.
- Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507-519.
- Jay Pantone and Vincent Vatter, Growth rates of permutation classes: categorization up to the uncountability threshold, arXiv:1605.04289 [math.CO], 2016-2019.
- Vincent Vatter, Permutation classes of every growth rate above 2.48188, arXiv:0807.2815 [math.CO], 2008-2009.
- Vincent Vatter, Permutation classes, arXiv:1409.5159 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
- Index entries for sequences that are permutations of the natural numbers.
Crossrefs
Programs
-
Maple
ss1 := [seq(PerSS(n,1), n=1..120)]; PerSS := (n,c) -> Z2N(N2Z(n)+c); N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1),1,0);
-
Mathematica
Join[{2}, LinearRecurrence[{1, 1, -1}, {4, 1, 6}, 100]] (* Amiram Eldar, Aug 08 2023 *)
Formula
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+1).
a(n) = n + 2*(-1^n) for n > 1. - Frank Ellermann, Feb 12 2002
a(n) = 2*n-a(n-1)-1, n>2. - Vincenzo Librandi, Dec 07 2010, corrected by R. J. Mathar, Dec 07 2010
From Colin Barker, Feb 18 2013: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
G.f.: x*(3*x^3-5*x^2+2*x+2) / ((x-1)^2*(x+1)). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 1. - Amiram Eldar, Aug 08 2023
Comments