A065205 Number of subsets of proper divisors of n that sum to n.
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 7, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 34, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 1, 0, 6, 0, 0, 0, 25, 0, 0, 0, 1, 0, 23, 0, 0, 0, 0, 0, 21, 0, 0, 0, 2
Offset: 1
Keywords
Examples
a(20) = 1 because {1, 4, 5, 10} is the only subset of proper divisors of 20 that sum to 20. a(24) = 5 because there are five different subsets we can use to sum up to 24: {1, 2, 3, 4, 6, 8}, {1, 2, 3, 6, 12}, {1, 3, 8, 12}, {2, 4, 6, 12}, {4, 8, 12}.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Programs
-
Haskell
a065205 n = p (a027751_row n) n where p _ 0 = 1 p [] _ = 0 p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Jan 21 2013
-
Mathematica
a[n_] := (dd = Most[ Divisors[n] ]; cc = Array[c, Length[dd]]; Length[ {ToRules[ Reduce[ And @@ (0 <= # <= 1 &) /@ cc && dd . cc == n, cc, Integers]]}]); Table[ a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 23 2012 *)
-
PARI
a(n,s,d)={s || (s=sigma(n)-n) || return; d||d=vecextract(divisors(n),"^-1"); while(d[#d]>n, s-=d[#d]; d=d[1..-2]); s<=n && return(s==n); if( n>d[#d], a(n-d[#d],s-d[#d],d[1..-2]), 1)+a(n,s-d[#d],d[1..-2])} \\ M. F. Hasler, May 11 2015
Formula
a(n) = A033630(n) - 1.
Extensions
More terms and additional comments from Jud McCranie, Oct 21 2001
Comments