cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A033630 Number of partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 35, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 26, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 22, 1, 1, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			a(12) = 3 because we have the partitions [12], [6, 4, 2], and [6, 3, 2, 1].
		

Crossrefs

Programs

  • Haskell
    a033630 0 = 1
    a033630 n = p (a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (d:ds) m = if d > m then 0 else p ds (m - d) + p ds m
    -- Reinhard Zumkeller, Feb 23 2014, Apr 04 2012, Oct 27 2011
  • Maple
    with(numtheory): a:=proc(n) local div, g, gser: div:=divisors(n): g:=product(1+x^div[j],j=1..tau(n)): gser:=series(g,x=0,105): coeff(gser,x^n): end: seq(a(n),n=1..100); # Emeric Deutsch, Mar 30 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    A033630 = Table[SeriesCoefficient[Series[Times@@((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n ], {n, 512}] (* Wouter Meeussen *)
    A033630[n_] := f[n, n, 1]; f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k + 1] + f[n, m - k, k + 1] * Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[A033630, 101, 0] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)

Formula

a(n) = A065205(n) + 1.
a(A005100(n)) = 1; a(A005835(n)) > 1. - Reinhard Zumkeller, Mar 02 2007
a(n) = f(n, n, 1) with f(n, m, k) = if k <= m then f(n, m, k + 1) + f(n, m - k, k + 1)*0^(n mod k) else 0^m. - Reinhard Zumkeller, Dec 11 2009
a(n) = [x^n] Product_{d|n} (1 + x^d). - Ilya Gutkovskiy, Jul 26 2017
a(n) = 1 if n is deficient (A005100) or weird (A006037). a(n) = 2 if n is perfect (A000396). - Alonso del Arte, Sep 24 2017

Extensions

More terms from Reinhard Zumkeller, Apr 21 2003

A005835 Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1

Views

Author

Keywords

Comments

In other words, some subset of the numbers { 1 <= d < n : d divides n } adds up to n. - N. J. A. Sloane, Apr 06 2008
Also, numbers n such that A033630(n) > 1. - Reinhard Zumkeller, Mar 02 2007
Deficient numbers cannot be pseudoperfect. This sequence includes the perfect numbers (A000396). By definition, it does not include the weird, i.e., abundant but not pseudoperfect, numbers (A006037).
From Daniel Forgues, Feb 07 2011: (Start)
The first odd pseudoperfect number is a(233) = 945.
An empirical observation (from the graph) is that it seems that the n-th pseudoperfect number would be asymptotic to 4n, or equivalently that the asymptotic density of pseudoperfect numbers would be 1/4. Any proof of this? (End)
A065205(a(n)) > 0; A210455(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013
Deléglise (1998) shows that abundant numbers have asymptotic density < 0.2480, resolving the question which he attributes to Henri Cohen of whether the abundant numbers have density greater or less than 1/4. The density of pseudoperfect numbers is the difference between the densities of abundant numbers (A005101) and weird numbers (A006037), since the remaining integers are perfect numbers (A000396), which have density 0. Using the first 22 primitive pseudoperfect numbers (A006036) and the fact that every multiple of a pseudoperfect number is pseudoperfect it can be shown that the density of pseudoperfect numbers is > 0.23790. - Jaycob Coleman, Oct 26 2013
The odd terms of this sequence are given by the odd abundant numbers A005231, up to hypothetical (so far unknown) odd weird numbers (A006037). - M. F. Hasler, Nov 23 2017
The term "pseudoperfect numbers" was coined by Sierpiński (1965). The alternative term "semiperfect numbers" was coined by Zachariou and Zachariou (1972). - Amiram Eldar, Dec 04 2020

Examples

			6 = 1+2+3, 12 = 1+2+3+6, 18 = 3+6+9, etc.
70 is not a member since the proper divisors of 70 are {1, 2, 5, 7, 10, 14, 35} and no subset adds to 70.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.

Crossrefs

Subsequence of A023196; complement of A136447.
See A136446 for another version.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a005835 n = a005835_list !! (n-1)
    a005835_list = filter ((== 1) . a210455) [1..]
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    with(combinat):
    isA005835 := proc(n)
        local b, S;
        b:=false;
        S:=subsets(numtheory[divisors](n) minus {n});
        while not S[finished] do
            if convert(S[nextvalue](), `+`)=n then
                b:=true;
                break
            end if ;
        end do;
        b
    end proc:
    for n from 1 do
        if isA005835(n) then
            print(n);
        end if;
    end do: # Walter Kehowski, Aug 12 2005
  • Mathematica
    A005835 = Flatten[ Position[ A033630, q_/; q>1 ] ] (* Wouter Meeussen *)
    pseudoPerfectQ[n_] := Module[{divs = Most[Divisors[n]]}, MemberQ[Total/@Subsets[ divs, Length[ divs]], n]]; A005835 = Select[Range[300],pseudoPerfectQ] (* Harvey P. Dale, Sep 19 2011 *)
    A005835 = {}; n = 0; While[Length[A005835] < 100, n++; d = Most[Divisors[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[A005835, n]]]; A005835 (* T. D. Noe, Dec 29 2011 *)
  • PARI
    is_A005835(n, d=divisors(n)[^-1], s=vecsum(d), m=#d)={ m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nA005835(n-d[m], d, s-d[m], m-1) || is_A005835(n, d, s-d[m], m-1), n==s)} \\ Returns nonzero iff n is the sum of a subset of d, which defaults to the set of proper divisors of n. Improved using more recent PARI syntax by M. F. Hasler, Jul 15 2016, Jul 27 2016. NOTE: This function is also used (with 2nd optional arg) in A136446, A122036 and possibly in A006037. - M. F. Hasler, Jul 28 2016
    for(n=1,1000,is_A005835(n)&&print1(n",")) \\ M. F. Hasler, Apr 06 2008
    

Extensions

Better description and more terms from Jud McCranie, Oct 15 1997

A083206 a(n) is the number of ways of partitioning the divisors of n into two disjoint sets with equal sum.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 17, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 14, 0, 0, 0, 1, 0, 13, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 2, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 22 2003

Keywords

Comments

a(n)=0 for deficient numbers n (A005100), but the converse is not true, as 18 is abundant (A005101) and a(18)=0, see A083211;
a(n)=1 for perfect numbers n (A000396), see A083209 for all numbers with a(n)=1;
records: A083213(k)=a(A083212(k)).
In order that a(n)>0, the sum of divisors of n must be even by definition: a(n) = half the number of partitions of A000203(n)/2 into divisors of n, see formula. [Reinhard Zumkeller, Jul 10 2010]

Examples

			a(24)=3: 1+2+3+4+8+12=6+24, 1+3+6+8+12=2+4+24, 4+6+8+12=1+2+3+24.
		

Crossrefs

Cf. A083208 [= a(A083207(n))], A083211, A000005, A000203, A082729, A378446 (inverse Möbius transform), A378449.
Cf. A083207 (positions of terms > 0), A083210 (positions of 0's), A083209 (positions of 1's), A378652 (of 2's).

Programs

  • Mathematica
    a[n_] := (s = DivisorSigma[1, n]; If[Mod[s, 2] == 1, 0, f[n, s/2, 2]]); f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k+1] + f[n, m-k, k+1]*Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[a, 105] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)
  • PARI
    A083206(n) = { my(s=sigma(n),p=1); if(s%2 || s < 2*n, 0, fordiv(n, d, p *= ('x^d + 'x^-d)); (polcoeff(p, 0)/2)); }; \\ Antti Karttunen, Dec 02 2024, after Ilya Gutkovskiy

Formula

a(n) = if sigma(n) mod 2 = 1 then 0 else f(n,sigma(n)/2,2), where sigma=A000203 and f(n,m,k) = if k<=m then f(n,m,k+1)+f(n,m-k,k+1)*0^(n mod k) else 0^m, cf. A033630, also using f. [Reinhard Zumkeller, Jul 10 2010]
a(n) is half the coefficient of x^0 in Product_{d|n} (x^d + 1/x^d). - Ilya Gutkovskiy, Feb 04 2024

A064771 Let S(n) = set of divisors of n, excluding n; sequence gives n such that there is a unique subset of S(n) that sums to n.

Original entry on oeis.org

6, 20, 28, 78, 88, 102, 104, 114, 138, 174, 186, 222, 246, 258, 272, 282, 304, 318, 354, 366, 368, 402, 426, 438, 464, 474, 490, 496, 498, 534, 572, 582, 606, 618, 642, 650, 654, 678, 748, 762, 786, 822, 834, 860, 894, 906, 940, 942, 978, 1002, 1014, 1038
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 19 2001

Keywords

Comments

Perfect numbers (A000396) are a proper subset of this sequence. Weird numbers (A006037) are numbers whose proper divisors sum to more than the number, but no subset sums to the number.
Odd elements are rare: the first few are 8925, 32445, 351351, 442365; there are no more below 100 million. See A065235 for more details.
A065205(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013

Examples

			Proper divisors of 20 are 1, 2, 4, 5 and 10. {1,4,5,10} is the only subset that sums to 20, so 20 is in the sequence.
		

Crossrefs

A005835 gives n such that some subset of S(n) sums to n. Cf. A065205.
Cf. A006037, A065205, A378448 (characteristic function).
Subsequences: A000396, A065235 (odd terms), A378519, A378530.
Cf. A027751.

Programs

  • Haskell
    a064771 n = a064771_list !! (n-1)
    a064771_list = map (+ 1) $ elemIndices 1 a065205_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Maple
    filter:= proc(n)
      local P,x,d;
      P:= mul(x^d+1, d = numtheory:-divisors(n) minus {n});
      coeff(P,x,n) = 1
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Sep 25 2024
  • Mathematica
    okQ[n_]:= Module[{d=Most[Divisors[n]]}, SeriesCoefficient[Series[ Product[ 1+x^i, {i, d}], {x, 0, n}], n] == 1];Select[ Range[ 1100],okQ] (* Harvey P. Dale, Dec 13 2010 *)
  • Python
    from sympy import divisors
    def isok(n):
        dp = {0: 1}
        for d in divisors(n)[:-1]:
            u = {}
            for k in dp.keys():
                if (s := (d + k)) <= n:
                    u[s] = dp.get(s, 0) + dp[k]
                    if s == n and u[s] > 1:
                        return False
            for k,v in u.items():
                dp[k] = v
        return dp.get(n, 0) == 1
    print([n for n in range(1, 1039) if isok(n)]) # Darío Clavijo, Sep 17 2024

Extensions

More terms from Don Reble, Jud McCranie and Naohiro Nomoto, Oct 22 2001

A065218 Consider the subsets of proper divisors of a number that sum to the number. These are numbers that set a record number of such subsets.

Original entry on oeis.org

1, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 831600, 1081080, 1441440
Offset: 1

Views

Author

Jud McCranie, Oct 21 2001

Keywords

Comments

Indices of records in A065205 and A033630. The corresponding records (number of subsets) are in A065219.
This sequence is not a subset of A002182: 831600 belongs to this sequence but not A002182.

Examples

			Proper divisors of 12 are {1, 2, 3, 4, 6}. Two subsets of this sum to 12: {2, 4, 6} and {1, 2, 3, 6} - more than any smaller number, so 12 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Table[-1 + SeriesCoefficient[Series[Times @@ ((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n], {n, 2520}]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]] (* Michael De Vlieger, Oct 10 2017 *)

Extensions

More terms from Franklin T. Adams-Watters, Nov 27 2006
Edited and extended by Max Alekseyev, May 29 2009
Offset changed by Andrey Zabolotskiy, Oct 10 2017

A210442 Number of partitions of n into proper divisors of n, cf. A027751.

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 7, 1, 9, 4, 10, 1, 44, 1, 13, 13, 35, 1, 80, 1, 91, 17, 19, 1, 457, 6, 22, 22, 155, 1, 741, 1, 201, 25, 28, 25, 2233, 1, 31, 29, 1369, 1, 1653, 1, 336, 285, 37, 1, 9675, 8, 406, 37, 453, 1, 3131, 37, 3064, 41, 46, 1, 73154, 1, 49, 492, 1827
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 21 2013

Keywords

Comments

For n > 0: a(A000040(n)) = 1 and a(A002808(n)) > 1.

Crossrefs

Programs

  • Haskell
    a210442 n = p (a027751_row n) n where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {n})[]]):
          b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,
                `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, l}, l = Most[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0 || i==1, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 02 2017, after Alois P. Heinz *)

A211111 Number of partitions of n into distinct divisors > 1 of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 19, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 14, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2012

Keywords

Comments

a(A136446(n)) > 1.

Examples

			n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2;
a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1;
n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1.
		

Crossrefs

Programs

  • Haskell
    a211111 n = p (tail $ a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m | m < k     = 0
                   | otherwise = p ks (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 18 2021
  • Mathematica
    a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 18 2021 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 18 2021

A065235 Odd numbers which can be written in precisely one way as sum of a subset of their proper divisors.

Original entry on oeis.org

8925, 32445, 351351, 442365, 159427275, 159587925, 159677175, 159784275, 159837825, 159855675, 159944925, 159962775, 160016325, 160105575, 160266225, 160284075, 160391175, 160444725, 160480425, 160533975, 160551825, 160766025, 161015925, 161033775, 161069475
Offset: 1

Views

Author

Jud McCranie, Oct 23 2001

Keywords

Comments

From Antti Karttunen, Nov 28 2024: (Start)
Characteristic function of this sequence is c(n) = A000035(n)*A378448(n).
The only non-multiples of 25 among the first 10000 terms are a(2)..(4): 32445 = 3^2 * 5 * 7 * 103, 351351 = 3^3 * 7 * 11 * 13^2 and 442365 = 3 * 5 * 7 * 11 * 383, while the other 9997 terms are all of the form 25 * some squarefree number. No terms of A228058 occur among the initial 10000 terms. Compare also to A348743.
(End)

Examples

			See A064771 for an example when the number is even.
		

Crossrefs

Odd terms in A064771 (a unique subset of proper divisors sums to the number).

Formula

{k such that k is odd and A065205(k) = 1}. - Antti Karttunen, Nov 28 2024

Extensions

Definition clarified by M. F. Hasler, Apr 08 2008
More terms from Giovanni Resta, Oct 04 2019

A294138 Number of compositions (ordered partitions) of n into proper divisors of n.

Original entry on oeis.org

1, 0, 1, 1, 5, 1, 24, 1, 55, 19, 128, 1, 1627, 1, 741, 449, 5271, 1, 45315, 1, 83343, 3320, 29966, 1, 5105721, 571, 200389, 26425, 5469758, 1, 154004510, 1, 47350055, 226019, 9262156, 51885, 15140335649, 1, 63346597, 2044894, 14700095925, 1, 185493291000, 1, 35539518745, 478164162
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2017

Keywords

Examples

			a(4) = 5 because 4 has 3 divisors {1, 2, 4} among which 2 are proper divisors {1, 2} therefore we have [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 45}]

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, d < n} x^d).
a(n) = A100346(n) - 1.

A348743 Odd nonsquares k for which A161942(k) >= k, where A161942 is the odd part of sigma.

Original entry on oeis.org

2205, 19845, 108045, 143325, 178605, 187425, 236925, 266805, 319725, 353925, 372645, 407925, 452025, 462825, 584325, 637245, 646425, 658125, 672525, 789525, 796005, 804825, 845325, 920205, 972405, 981225, 1007325, 1055925, 1069425, 1102725, 1113525, 1116225, 1166445, 1201725, 1245825, 1289925, 1378125, 1380825, 1442925
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

The first non-multiples of 5 are a(103) = 6243237 and a(125) = 8164233.
From Antti Karttunen, Nov 28 2024: (Start)
This is not a subsequence of A228058. At least k = A000040(28)*(A002110(27)/2)^2 = 15388519572341080054329140040512468358441210638435506649120749687401476705908239675 is a number of the form 4m+3 such that A161942(k) >= k.
Another such number is A000040(28)*81*(A002110(25)/6)^2 = 1279741205456530915782536871495922949062895982530933679752838870798129159675.
Question: What is the smallest term of this sequence that is of the form 4m+3, and thus not in A386427 (in A191218 and in A228058)?
(End)

Crossrefs

Intersection of A088828 and A348742.
Cf. A386427 (a subsequence, which agrees for a very long time).
Cf. also A065235, A162284.

Programs

  • PARI
    A000265(n) = (n >> valuation(n, 2));
    isA348743(n) = ((n%2)&&!issquare(n)&&A000265(sigma(n))>=n); \\ Edited Nov 28 2024

Extensions

Definition changed (from > to >=) to formally include also any hypothetical odd perfect numbers - Antti Karttunen, Nov 28 2024
Comment removed, because it was more related to sequence A386427. - Antti Karttunen, Aug 21 2025
Showing 1-10 of 21 results. Next