cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065299 Numbers k such that sigma(k)*phi(k) is squarefree.

Original entry on oeis.org

1, 2, 4, 9, 121, 242, 529, 1058, 2209, 3481, 4418, 5041, 6889, 6962, 10082, 11449, 13778, 17161, 22898, 27889, 32041, 34322, 51529, 55778, 57121, 64082, 96721, 103058, 114242, 120409, 128881, 146689, 175561, 185761, 193442, 196249, 218089
Offset: 1

Views

Author

Labos Elemer, Oct 29 2001

Keywords

Examples

			All solutions are either squares or twice squares. Proper subset of A055008 or A028982. Several squares (of primes) and 2*squares are not here. E.g., 242 is here because phi(242) = 110, sigma(242) = 399, 2*5*11*3*7*19 is squarefree; 18 is not here, since 2*3*3*13 is not squarefree.
		

Crossrefs

Programs

  • Mathematica
    a[x_] := Abs[MoebiusMu[DivisorSigma[1, x]*EulerPhi[x]]] Do[s=as[n]; If[Equal[s, 1], Print[{n, Sqrt[n]}]], {n, 1, 1000000}]
    Select[Range[250000],SquareFreeQ[DivisorSigma[1,#]*EulerPhi[#]]&] (* Harvey P. Dale, Jul 15 2015 *)
  • PARI
    n=0; for (m = 1, 10^9, s=abs(moebius(sigma(m)*eulerphi(m))); if (s==1, write("b065299.txt", n++, " ", m); if (n==500, return))) \\ Harry J. Smith, Oct 15 2009
    
  • PARI
    is(f)=my(n=#f~, v=List()); for(i=1,n, if(f[i,1]>2, listput(v,f[i,1]-1)); if(f[i,2]>2, return(0), f[i,2]>1, listput(v,f[i,1])); listput(v, (f[i,1]^(f[i,2]+1)-1)/(f[i,1]-1))); for(i=2,#v, for(j=1,i-1, if(gcd(v[i],v[j])>1, return(0)))); for(i=1,#v, if(!issquarefree(v[i]), return(0))); 1
    sq(f)=f[,2]*=2; f
    double(f)=if(#f~ && f[1,1]==2, f[1,2]++, f=concat([2,1],f)); f
    list(lim)=my(v=List()); forsquarefree(n=1,sqrtint(lim\1), if(is(sq(n[2])), listput(v,n[1]^2))); forsquarefree(n=1,sqrtint(lim\2), if(is(double(sq(n[2]))), listput(v,2*n[1]^2))); Set(v) \\ Charles R Greathouse IV, Feb 05 2018

Formula

Solutions to abs(A008683(A000203(x)*A000010(x))) = 1.