A065339 Number of primes congruent to 3 modulo 4 dividing n (with multiplicity).
0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 2, 0, 1, 2, 0, 1, 1, 0, 0, 2, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 1, 1, 2, 0, 1, 1, 0, 1, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 2, 1, 1, 0, 4, 0, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 1, 1, 0, 2, 3, 0, 0, 1, 1, 0, 2
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Crossrefs
Programs
-
Haskell
a065339 1 = 0 a065339 n = length [x | x <- a027746_row n, mod x 4 == 3] -- Reinhard Zumkeller, Jan 10 2012
-
Maple
A065339 := proc(n) a := 0 ; for f in ifactors(n)[2] do if op(1,f) mod 4 = 3 then a := a+op(2,f) ; end if; end do: a ; end proc: # R. J. Mathar, Dec 16 2011
-
Mathematica
f[n_]:=Plus@@Last/@Select[If[n==1,{},FactorInteger[n]],Mod[#[[1]],4]==3&]; Table[f[n],{n,100}] (* Ray Chandler, Dec 18 2011 *)
-
PARI
A065339(n)=sum(i=1,#n=factor(n)~,if(n[1,i]%4==3,n[2,i])) \\ M. F. Hasler, Apr 16 2012
-
Scheme
;; using memoization-macro definec (definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) (else (+ (/ (- (modulo (A020639 n) 4) 1) 2) (A065339 (A032742 n)))))) ;; Antti Karttunen, Aug 14 2015
-
Scheme
;; using memoization-macro definec (definec (A065339 n) (cond ((< n 3) 0) ((even? n) (A065339 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A065339 (A032742 n))) (else (+ (A067029 n) (A065339 (A028234 n)))))) ;; Antti Karttunen, Aug 14 2015
Formula
From Antti Karttunen, Aug 14 2015: (Start)
a(1) = a(2) = 0; thereafter, if n is even, a(n) = a(n/2), otherwise a(n) = ((A020639(n) mod 4)-1)/2 + a(n/A020639(n)). [Where A020639(n) gives the smallest prime factor of n.]
Other identities and observations. For all n >= 1:
Totally additive with a(2) = 0, a(p) = 1 if p == 3 (mod 4), and a(p) = 0 if p == 1 (mod 4). - Amiram Eldar, Jun 17 2024