A065421 Decimal expansion of Viggo Brun's constant B, also known as the twin primes constant B_2: Sum (1/p + 1/q) as (p,q) runs through the twin primes.
1, 9, 0, 2, 1, 6, 0, 5, 8
Offset: 1
Examples
(1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + ... = 1.902160583209 +- 0.000000000781 [Nicely]
References
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 14.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 133-135.
- Paulo Ribenboim, The Book of Prime Number Records, 2nd. ed., Springer-Verlag, New York, 1989, p. 201.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 193.
Links
- V. Brun, La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ... où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie, Bull Sci. Math. 43 (1919), 100-104 and 124-128.
- C. K. Caldwell, The Prime Glossary, Brun's constant
- Sebastian M. Cioabă and Werner Linde, A Bridge to Advanced Mathematics: from Natural to Complex Numbers, Amer. Math. Soc. (2023) Vol. 58, see page 334.
- Steven R. Finch, Brun's Constant [Broken link]
- Steven R. Finch, Brun's Constant [From the Wayback machine]
- Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant, Virginia Journal of Science, 46:3 (Fall, 1995), 195-204.
- Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant [Local copy, pdf only]
- Thomas R. Nicely, Prime Constellations Research Project
- P. Sebah, Numbers, constants and computation
- D. Shanks and J. W. Wrench, Brun's constant, Math. Comp. 28 (1974) 293-299; 28 (1974) 1183; Math. Rev. 50 #4510.
- H. Tronnolone, A tale of two primes, COLAUMS Space, #3, 2013.
- Wikipedia, Brun's constant
Crossrefs
Formula
Equals Sum_{n>=1} 1/A077800(n).
From Dimitris Valianatos, Dec 21 2013: (Start)
(1/5) + Sum_{n>=1, excluding twin primes 3,5,7,11,13,...} mu(n)/n =
(1/5) + 1 - 1/2 + 1/6 + 1/10 + 1/14 + 1/15 + 1/21 + 1/22 - 1/23 + 1/26 - 1/30 + 1/33 + 1/34 + 1/35 - 1/37 + 1/38 + 1/39 - 1/42 ... = 1.902160583... (End)
Extensions
Corrected by N. J. A. Sloane, Nov 16 2001
More terms computed by Pascal Sebah (pascal_sebah(AT)ds-fr.com), Jul 15 2001
Further terms computed by Pascal Sebah (psebah(AT)yahoo.fr), Aug 22 2002
Commented and edited by Daniel Forgues, Jul 28 2009
Commented and reference added by Jonathan Sondow, Nov 26 2010
Unsound terms after a(9) removed by Gord Palameta, Sep 06 2018
Comments