cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A001097 Twin primes.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643
Offset: 1

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

Union of A001359 and A006512.
The only twin primes that are Fibonacci numbers are 3, 5 and 13 [MacKinnon]. - Emeric Deutsch, Apr 24 2005
(p, p+2) are twin primes if and only if p + 2 can be represented as the sum of two primes. Brun (1919): Even if there are infinitely many twin primes, the series of all twin prime reciprocals does converges to [Brun's constant] (A065421). Clement (1949): For every n > 1, (n, n+2) are twin primes if and only if 4((n-1)! + 1) == -n (mod n(n+2)). - Stefan Steinerberger, Dec 04 2005
A164292(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2010
The 100355-digit numbers 65516468355 * 2^333333 +- 1 are currently the largest known twin prime pair. They were discovered by Twin Prime Search and Primegrid in August 2009. - Paul Muljadi, Mar 07 2011
For every n > 2, the pair (n, n+2) is a twin prime if and only if ((n-1)!!)^4 == 1 (mod n*(n+2)). - Thomas Ordowski, Aug 15 2016
The term "twin primes" ("primzahlzwillinge", in German) was coined by the German mathematician Paul Gustav Samuel Stäckel (1862-1919) in 1916. Brun (1919) used the same term in French ("nombres premiers jumeaux"). Glaisher (1878) and Hardy and Littlewood (1923) used the term "prime-pairs". The term "twin primes" in English was used by Dantzig (1930). - Amiram Eldar, May 20 2023

References

  • Tobias Dantzig, Number: The Language of Science, Macmillan, 1930.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, pp. 259-265.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 132.

Crossrefs

Cf. A070076, A001359, A006512, A164292. See A077800 for another version.

Programs

  • Haskell
    a001097 n = a001097_list !! (n-1)
    a001097_list = filter ((== 1) . a164292) [1..]
    -- Reinhard Zumkeller, Feb 03 2014, Nov 27 2011
    
  • Maple
    A001097 := proc(n)
        option remember;
        if n = 1 then
            3;
        else
            for a from procname(n-1)+1 do
                if isprime(a) and ( isprime(a-2) or isprime(a+2) ) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Feb 19 2015
  • Mathematica
    Select[ Prime[ Range[120]], PrimeQ[ # - 2] || PrimeQ[ # + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
    Union[Flatten[Select[Partition[Prime[Range[200]],2,1],#[[2]]-#[[1]] == 2&]]] (* Harvey P. Dale, Aug 19 2015 *)
  • PARI
    isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) \\ Michael B. Porter, Oct 29 2009
    
  • PARI
    a(n)=if(n==1,return(3));my(p);forprime(q=3,default(primelimit), if(q-p==2 && (n-=2)<0, return(if(n==-1,q,p)));p=q) \\ Charles R Greathouse IV, Aug 22 2012
    
  • PARI
    list(lim)=my(v=List([3]),p=5); forprime(q=7,lim, if(q-p==2, listput(v,p); listput(v,q)); p=q); if(p+2>lim && isprime(p+2), listput(v,p)); Vec(v) \\ Charles R Greathouse IV, Mar 17 2017
    
  • Python
    from sympy import nextprime
    from itertools import islice
    def agen(): # generator of terms
        yield 3
        p, q = 5, 7
        while True:
            if q - p == 2: yield from [p, q]
            p, q = q, nextprime(q)
    print(list(islice(agen(), 58))) # Michael S. Branicky, Apr 30 2022

A077800 List of twin primes {p, p+2}.

Original entry on oeis.org

3, 5, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619
Offset: 1

Views

Author

N. J. A. Sloane, Dec 03 2002

Keywords

Comments

Union (with repetition) of A001359 and A006512.

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.

Crossrefs

Cf. A065421, A070076, A095958. See A001097 for another version.

Programs

  • Haskell
    a077800 n = a077800_list !! (n-1)
    a077800_list = concat $ zipWith (\p q -> if p == q+2 then [q,p] else [])
                                    (tail a000040_list) a000040_list
    -- Reinhard Zumkeller, Nov 27 2011
    
  • Mathematica
    Sort[ Join[ Select[ Prime[ Range[ 115]], PrimeQ[ # - 2] &], Select[ Prime[ Range[ 115]], PrimeQ[ # + 2] &]]] (* Robert G. Wilson v, Jun 09 2005 *)
    Select[ Partition[ Prime@ Range@ 115, 2, 1], #[[1]] + 2 == #[[2]] &] // Flatten
    Flatten[Select[{#, # + 2} & /@Prime[Range[1000]], PrimeQ[Last[#]]&]] (* Vincenzo Librandi, Nov 01 2012 *)
    Splice[{#,#+2}]& /@ Select[Prime[Range[PrimePi[619]]], PrimeQ[#+2]&] (* Oliver Seipel, Sep 04 2024 *)
  • PARI
    p=2;forprime(q=3,1e3,if(q-p==2,print1(p", "q", "));p=q) \\ Charles R Greathouse IV, Mar 22 2013

Formula

Sum_{n>=1} 1/a(n) is in the interval (1.840503, 2.288490) (Platt and Trudgian, 2020). The conjectured value based on assumptions about the distribution of twin primes is A065421. - Amiram Eldar, Oct 15 2020

A005597 Decimal expansion of the twin prime constant C_2 = Product_{ p prime >= 3 } (1-1/(p-1)^2).

Original entry on oeis.org

6, 6, 0, 1, 6, 1, 8, 1, 5, 8, 4, 6, 8, 6, 9, 5, 7, 3, 9, 2, 7, 8, 1, 2, 1, 1, 0, 0, 1, 4, 5, 5, 5, 7, 7, 8, 4, 3, 2, 6, 2, 3, 3, 6, 0, 2, 8, 4, 7, 3, 3, 4, 1, 3, 3, 1, 9, 4, 4, 8, 4, 2, 3, 3, 3, 5, 4, 0, 5, 6, 4, 2, 3, 0, 4, 4, 9, 5, 2, 7, 7, 1, 4, 3, 7, 6, 0, 0, 3, 1, 4, 1, 3, 8, 3, 9, 8, 6, 7, 9, 1, 1, 7, 7, 9
Offset: 0

Views

Author

Keywords

Comments

C_2 = Product_{ p prime > 2} (p * (p-2) / (p-1)^2) is the 2-tuple case of the Hardy-Littlewood prime k-tuple constant (part of First H-L Conjecture): C_k = Product_{ p prime > k} (p^(k-1) * (p-k) / (p-1)^k).
Although C_2 is commonly called the twin prime constant, it is actually the prime 2-tuple constant (prime pair constant) which is relevant to prime pairs (p, p+2m), m >= 1.
The Hardy-Littlewood asymptotic conjecture for Pi_2m(n), the number of prime pairs (p, p+2m), m >= 1, with p <= n, claims that Pi_2m(n) ~ C_2(2m) * Li_2(n), where Li_2(n) = Integral_{2, n} (dx/log^2(x)) and C_2(2m) = 2 * C_2 * Product_{p prime > 2, p | m} (p-1)/(p-2), which gives: C_2(2) = 2 * C_2 as the prime pair (p, p+2) constant, C_2(4) = 2 * C_2 as the prime pair (p, p+4) constant, C_2(6) = 2* (2/1) * C_2 as the prime pair (p, p+6) constant, C_2(8) = 2 * C_2 as the prime pair (p, p+8) constant, C_2(10) = 2 * (4/3) * C_2 as the prime pair (p, p+10) constant, C_2(12) = 2 * (2/1) * C_2 as the prime pair (p, p+12) constant, C_2(14) = 2 * (6/5) * C_2 as the prime pair (p, p+14) constant, C_2(16) = 2 * C_2 as the prime pair (p, p+16) constant, ... and, for i >= 1, C_2(2^i) = 2 * C_2 as the prime pair (p, p+2^i) constant.
C_2 also occurs as part of other Hardy-Littlewood conjectures related to prime pairs, e.g., the Hardy-Littlewood conjecture concerning the distribution of the Sophie Germain primes (A156874) on primes p such that 2p+1 is also prime.
Another constant related to the twin primes is Viggo Brun's constant B (sometimes also called the twin primes Viggo Brun's constant B_2) A065421, where B_2 = Sum (1/p + 1/q) as (p,q) runs through the twin primes.
Reciprocal of the Selberg-Delange constant A167864. See A167864 for additional comments and references. - Jonathan Sondow, Nov 18 2009
C_2 = Product_{prime p>2} (p-2)p/(p-1)^2 is an analog for primes of Wallis' product 2/Pi = Product_{n=1 to oo} (2n-1)(2n+1)/(2n)^2. - Jonathan Sondow, Nov 18 2009
One can compute a cubic variant, product_{primes >2} (1-1/(p-1)^3) = 0.855392... = (2/3) * 0.6601618...* 1.943596... by multiplying this constant with 2/3 and A082695. - R. J. Mathar, Apr 03 2011
Cohen (1998, p. 7) referred to this number as the "twin prime and Goldbach constant" and noted that, conjecturally, the number of twin prime pairs (p,p+2) with p <= X tends to 2*C_2*X/log(X)^2 as X tends to infinity. - Artur Jasinski, Feb 01 2021

Examples

			0.6601618158468695739278121100145557784326233602847334133194484233354056423...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 11.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, pp. 84-93, 133.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A8.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, ch. 22.20.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 194, 263-264.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A065645 (continued fraction), A065646 (denominators of convergents to twin prime constant), A065647 (numerators of convergents to twin prime constant), A062270, A062271, A114907, A065418 (C_3), A167864, A000010, A008683.

Programs

  • Mathematica
    s[n_] := (1/n)*N[ Sum[ MoebiusMu[d]*2^(n/d), {d, Divisors[n]}], 160]; C2 = (175/256)*Product[ (Zeta[n]*(1 - 2^(-n))*(1 - 3^(-n))*(1 - 5^(-n))*(1 - 7^(-n)))^(-s[n]), {n, 2, 160}]; RealDigits[C2][[1]][[1 ;; 105]] (* Jean-François Alcover, Oct 15 2012, after PARI *)
    digits = 105; f[n_] := -2*(2^n-1)/(n+1); C2 = Exp[NSum[f[n]*(PrimeZetaP[n+1] - 1/2^(n+1)), {n, 1, Infinity}, NSumTerms -> 5 digits, WorkingPrecision -> 5 digits]]; RealDigits[C2, 10, digits][[1]] (* Jean-François Alcover, Apr 16 2016, updated Apr 24 2018 *)
  • PARI
    \p1000; 175/256*prod(k=2,500,(zeta(k)*(1-1/2^k)*(1-1/3^k)*(1-1/5^k)*(1-1/7^k))^(-sumdiv(k,d,moebius(d)*2^(k/d))/k))
    
  • PARI
    prodeulerrat(1-1/(p-1)^2, 1, 3) \\ Amiram Eldar, Mar 12 2021

Formula

Equals Product_{k>=2} (zeta(k)*(1-1/2^k))^(-Sum_{d|k} mu(d)*2^(k/d)/k). - Benoit Cloitre, Aug 06 2003
Equals 1/A167864. - Jonathan Sondow, Nov 18 2009
Equals Sum_{k>=1} mu(2*k-1)/phi(2*k-1)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010) (Bruckman, 2001). - Amiram Eldar, Jan 14 2022

Extensions

More terms from Vladeta Jovovic, Nov 08 2001
Commented and edited by Daniel Forgues, Jul 28 2009, Aug 04 2009, Aug 12 2009
PARI code removed by D. S. McNeil, Dec 26 2010

A209328 Decimal expansion of the sum of the inverse twin prime products.

Original entry on oeis.org

1, 0, 7, 9, 8, 3, 9, 7, 4, 9, 5
Offset: 0

Views

Author

R. J. Mathar, Jan 19 2013

Keywords

Comments

Summation up to the lesser prime(100000) gives 0.1079839703839.., summation up to the lesser prime(5000000) gives 0.10798397490956.. and summation up to the lesser prime(100000000) gives 0.107983974949..
The constant splits Brun's constant B=A065421 into two portions: define L=Sum_{n>=1} 1/A001359(n) and U=Sum_{n>=1} 1/A006512(n). Then B=U+L and this constant here = (L-U)/2. This leads to the estimates L=1.059064 and U=0.843096. - R. J. Mathar, Feb 05 2013

Examples

			0.10798397495... = 1/(3*5) + 1/(5*7) + 1/(11*13) + .. = Sum_{n>=1} 1/A037074(n).
		

Crossrefs

A160910 Decimal expansion of c = sum over twin primes (p, p+2) of (1/p^2 + 1/(p+2)^2).

Original entry on oeis.org

2, 3, 7, 2, 5, 1, 7, 7, 6, 5, 7
Offset: 0

Views

Author

William Royle (seriesandsequences(AT)yahoo.com), May 29 2009

Keywords

Comments

Compare Viggo Brun's constant (1/3 + 1/5) + (1/5 + 1/7) + (1/11 + 1/13) + (1/17 + 1/19) + (1/29 + 1/31) + ... (see A065421, A005597).
It appears that c = Sum 1/A001359(n)^2 + 1/A006512(n)^2. - R. J. Mathar, May 30 2009
0.237251776574746 < c < 0.237251776947124. - Farideh Firoozbakht, May 31 2009
c < 0.2725177657771. - Hagen von Eitzen, Jun 03 2009
From Farideh Firoozbakht, Jun 01 2009: (Start)
We can show that a(9)=6, a(10)=5, and a(11) is in the set {7, 8, 9}.
Proof: s1 = 0.237251776576249072... is the sum up to prime(499,000,000) and s2 = 0.237251776576250009... is the sum up to prime(500,000,000).
By using the fact that number of twin primes between the first 10^6*n primes and the first 10^6*(n+1) primes is decreasing (up to the first 2*10^9 primes), we conclude that the sum up to prime(2,000,000,000) is less than s2 + 1500*(s2-s1).
But since s2-s1 < 10^(-15), the sum up to prime(2*10^9) is less than s2 + 1.5*10^(-12) = 0.237251776576250009... + 1.5*10^(-12) = 0.237251776577550009... .
Hence the constant c is less than
0.237251776577550009... + lim(sum(1/k^2,{k, prime(2,000,000,001), n}, n -> infinity)
< 0.237251776577550009... + 2.12514*10^(-11)
< 0.237251776598801409.
So we have 0.237251776576250009 < c < 0.237251776598801409, hence a(9)=6, a(10)=5, and a(11) is in the set {7, 8, 9}.
I guess that a(11)=7. (End)
From Jon E. Schoenfield, Jan 02 2019: (Start)
Given that the Hardy-Littlewood approximation to the number of twin prime pairs < y is
2 * C_2 * Integral_{x=2..y} dx/log(x)^2
where C_2 = 0.660161815846869573927812110014555778432623 (see A152051), we can estimate the size of the tail of the summation Sum(1/A001359(j)^2) + 1/A006512(j)^2) for twin primes > y as
t(y) = 2 * C_2 * Integral_{x>y} 2*dx/(x*log(x))^2.
Let s(y) be the sum of the squares of the reciprocals of all the twin primes <= y, and let s'(y) = s(y) + t(y) be the result of adding to the actual value s(y) the estimated tail size t(y). Evaluating s(y), t(y), and s'(y) at y = 2^d for d = 20..33 gives
.
d s(2^d) t(2^d)*10^10 s(2^d) + t(2^d)
== ==================== ============ ====================
20 0.237251764919808326 115.34589710 0.237251776454398036
21 0.237251771317612979 52.59702970 0.237251776577315949
22 0.237251774173347724 24.08221952 0.237251776581569676
23 0.237251775469086555 11.06766714 0.237251776575853269
24 0.237251776066813995 5.10395459 0.237251776577209454
25 0.237251776340760021 2.36119196 0.237251776576879217
26 0.237251776467109357 1.09553336 0.237251776576662693
27 0.237251776525743797 0.50967952 0.237251776576711749
28 0.237251776552887645 0.23771866 0.237251776576659511
29 0.237251776565549906 0.11113468 0.237251776576663374
30 0.237251776571456873 0.05207020 0.237251776576663892
31 0.237251776574218065 0.02444677 0.237251776576662742
32 0.237251776575513036 0.01149984 0.237251776576663020
33 0.237251776576121140 0.00541938 0.237251776576663078
.
which agrees with all the terms in the Data section and suggests likely values for additional terms.
(End)

Examples

			(1/9 + 1/25) + (1/25 + 1/49) + (1/121 + 1/169) + (1/289 + 1/361) + (1/841 + 1/961) + ... = 0.237251...
		

Crossrefs

Extensions

R. J. Mathar pointed out that the value of c as originally submitted was incorrect (see link). - N. J. A. Sloane, May 31 2009
More terms from Farideh Firoozbakht and Hagen von Eitzen, Jun 01 2009
Name changed by Michael B. Porter, Jan 04 2019

A194098 Decimal expansion of sum of reciprocals of cousin primes.

Original entry on oeis.org

1, 1, 9, 7, 0, 4, 4, 9
Offset: 1

Views

Author

Kausthub Gudipati, Aug 15 2011

Keywords

Comments

The value is obtained by summing cousin prime pairs with values less than 2^42 (which yields 1.10633...) and a logarithmic extrapolation of Brun's constant A065421.
The estimate by [Park-Lee] is 1.197054+-7e-6. - R. J. Mathar, Feb 09 2013

References

  • Yeonyong Park, Heonsoo Lee, On the several differences between primes, J. Appl. Math. & Computing 13 (2003) vol 1-2, pp 37-51.

Formula

Equals 1.1970449... = (1/7+1/11)+(1/13+1/17)+.. = Sum_{n>=2} (1/A023200(n) + 1/A046132(n)).

A356793 Decimal expansion of sum of squares of reciprocals of lesser twin primes, Sum_{j>=1} 1/(A001359(j))^2.

Original entry on oeis.org

1, 6, 5, 6, 1, 8, 4, 6, 5, 3, 9, 5
Offset: 0

Views

Author

Artur Jasinski, Sep 04 2022

Keywords

Comments

Alternative definition: sum of squares of reciprocals of primes whose distance from the next prime is equal to 2.
Convergence table:
k A001359(k) Sum_{j=1..k} 1/A001359(j)^2
10000000 3285916169 0.165618465394273171950874120818
20000000 7065898967 0.165618465394707600197099741096
30000000 11044807451 0.165618465394836120901019351544
40000000 15151463321 0.165618465394895965582366015390
50000000 19358093939 0.165618465394930089884704869090
60000000 23644223231 0.165618465394951950670948192842
Using the Hardy-Littlewood prediction of the density of twin primes (see A347278), the contribution to the sum after the last entry in the table above can be estimated as 9.056*10^(-14), making the infinite sum ~= 0.16561846539504... . - Hugo Pfoertner, Sep 28 2022

Examples

			0.165618465395...
		

Crossrefs

Extensions

Data extended to ...3, 9, 5 by Hugo Pfoertner, Sep 28 2022

A306539 Decimal expansion of Sum (1/p - 1/q) as (p, q) runs through the twin primes.

Original entry on oeis.org

2, 1, 5, 9, 6, 7, 9, 4, 9, 9, 0, 2, 3, 7, 4
Offset: 0

Views

Author

Dimitris Valianatos, Feb 22 2019

Keywords

Comments

If a = Sum (1/p) as (p, q) runs through the twin primes and
If b = Sum (1/q) as (p, q) runs through the twin primes, then
a + b = 1.902160583209... (Brun's constant) and
a - b = 0.215967949902374... (This constant).
So a = Sum_{n>=1} 1/A001359(n) = 1.059064266555685...
and b = Sum_{n>=1} 1/A006512(n) = 0.843096316653315... are 2 new constants for twin primes.

Examples

			0.215967949902374...
		

Crossrefs

Programs

  • PARI
    p=2;s=0.0;forprime(n=3,1e14,if(n-p==2,s+=(1/p-1/n));p=n;);print1(s)

Formula

Equals 2 * A209328. - Amiram Eldar, Nov 20 2020

A342714 Decimal expansion of infinite sum of reciprocals of lesser twin primes, Sum_{n>=1} 1/A001359(n).

Original entry on oeis.org

1, 0, 5, 9, 0, 6, 4, 2, 6
Offset: 1

Views

Author

Artur Jasinski, Mar 19 2021

Keywords

Comments

Alternative definition: infinite sum of reciprocals of primes whose distance to the next prime is equal to 2.
R. J. Mathar gave an estimate of 1.059064 for this constant in a comment at A209328. Dimitris Valianatos estimated the constant as 1.059064266555685... in a comment at A306539.

Examples

			Equals 1.05906426...
		

Crossrefs

Formula

Equals 1/3 + 1/5 + 1/11 + 1/17 + 1/29 + 1/41 + 1/59 + ...
Equals (A065421 + A306539)/2.

A172273 a(n) = floor(n*(sqrt(11) - sqrt(2))).

Original entry on oeis.org

0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 119, 121, 123, 125
Offset: 0

Views

Author

Vincenzo Librandi, Jan 30 2010

Keywords

Comments

Initially similar to A038124 because sqrt(11)-sqrt(2) = 1.90241122... is close to A065421. - R. J. Mathar, Feb 05 2010

Crossrefs

Programs

  • Magma
    [Floor(n*(Sqrt(11)-Sqrt(2))): n in [0..80]]; // Vincenzo Librandi, Aug 01 2013
    
  • Mathematica
    With[{c = Sqrt[11] - Sqrt[2]}, Floor[c Range[0, 80]]] (* Vincenzo Librandi, Aug 01 2013 *)
  • PARI
    vector(100, n, n--; floor(n*(sqrt(11) - sqrt(2)))) \\ G. C. Greubel, Aug 18 2018
Showing 1-10 of 26 results. Next