cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065428 Numbers k such that no x^2 mod k is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 12, 15, 16, 24, 28, 40, 48, 56, 60, 72, 88, 112, 120, 168, 232, 240, 280, 312, 408, 520, 760, 840, 1320, 1848
Offset: 1

Views

Author

Joerg Arndt, Nov 16 2001

Keywords

Comments

All numbers in this sequence except 56 are idoneal (A000926) - Joerg Arndt, Jul 13 2005
No more terms < 10^6. - T. D. Noe, Aug 10 2007
No more terms < 10^11. - Charles R Greathouse IV, Dec 15 2008
Numbers x such that all x^3 mod k are nonprimes are 1, 2, 7, 9, 63, and apparently no more.

Crossrefs

Cf. A179402 (x^4 mod n).
Cf. A214583 (n such that for all k with gcd(n, k) = 1 and n > k^2, n - k^2 is prime).

Programs

  • Haskell
    a065428 n = a065428_list !! (n-1)
    a065428_list = filter f [1..] where
       f x = all (== 0) $
             map (a010051' . (`mod` x) . a000290) [a000196 x .. x-1]
    -- Reinhard Zumkeller, Aug 01 2012, Aug 15 2011
    
  • Mathematica
    t={}; Do[s=Union[Mod[Range[n]^2,n]]; If[Select[s,PrimeQ]=={}, AppendTo[t,n]], {n,1000}]; t  (* T. D. Noe, Aug 10 2007 *)
    nx2pQ[n_]:=Module[{m=PowerMod[Range[3n],2,n]},Count[ FindTransientRepeat[ m,2][[2]], ?PrimeQ]==0]; Select[Range[2000],nx2pQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale, Jun 11 2019 *)
  • PARI
    for(n=1, 10^9, q=1; for(x=1, n-1, if(isprime(lift(Mod(x,n)^2)), q=0; break())); if(q, print1(n, ", "))); \\ edited, Joerg Arndt, Jan 28 2015
    
  • Python
    from sympy import isprime
    def ok(n): return not any(isprime((x**2)%n) for x in range(2, n))
    print(list(filter(ok, range(1, 2000)))) # Michael S. Branicky, May 08 2021