cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065442 Decimal expansion of Erdős-Borwein constant Sum_{k>=1} 1/(2^k - 1).

Original entry on oeis.org

1, 6, 0, 6, 6, 9, 5, 1, 5, 2, 4, 1, 5, 2, 9, 1, 7, 6, 3, 7, 8, 3, 3, 0, 1, 5, 2, 3, 1, 9, 0, 9, 2, 4, 5, 8, 0, 4, 8, 0, 5, 7, 9, 6, 7, 1, 5, 0, 5, 7, 5, 6, 4, 3, 5, 7, 7, 8, 0, 7, 9, 5, 5, 3, 6, 9, 1, 4, 1, 8, 4, 2, 0, 7, 4, 3, 4, 8, 6, 6, 9, 0, 5, 6, 5, 7, 1, 1, 8, 0, 1, 6, 7, 0, 1, 5, 5, 5, 7, 5, 8, 9, 7, 0, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 18 2001

Keywords

Comments

Also the decimal expansion of the (finite) value of Sum_{ k >= 1, k has no digit equal to 0 in base 2 } 1/k. - Robert G. Wilson v, Aug 03 2010
This constant is irrational (Erdős, 1948; Borwein, 1992). - Amiram Eldar, Aug 01 2020

Examples

			1.60669515241529176378330152319092458048057967150575643577807955369...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 354-361.
  • Paul Halmos, "Problems for Mathematicians, Young and Old", Dolciani Mathematical Expositions, 1991, p. 258.

Crossrefs

See A038631 for continued fraction.

Programs

  • Maple
    # Uses Lambert series, cf. formula by Arndt:
    evalf( add( (1/2)^(n^2)*(1 + 2/(2^n - 1)), n = 1..20 ), 105);
    # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[ Sum[1/(2^k - 1), {k, 350}], 10, 111][[1]] (* Robert G. Wilson v, Nov 05 2006 *)
    (* first install irwinSums.m, see reference, then *) First@ RealDigits@ iSum[0, 0, 111, 2] (* Robert G. Wilson v, Aug 03 2010 *)
    RealDigits[(Log[2] - 2 QPolyGamma[0, 1, 2])/Log[4], 10, 100][[1]] (* Fred Daniel Kline, May 23 2011 *)
    x = 1/2; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* Robert G. Wilson v, Oct 12 2014 after an observation and formula of Amarnath Murthy, see A073668 *)
  • PARI
    a(n)= s=0; for(x=1,n,s=s+1.0/(2^x-1)); s
    
  • PARI
    default(realprecision, 2080); x=suminf(k=1, 1/(2^k - 1)); for (n=1, 2000, d=floor(x); x=(x-d)*10; write("b065442.txt", n, " ", d)) \\ Harry J. Smith, Oct 19 2009
    
  • PARI
    k=1.; suminf(n=1, k>>=1; k^n*(1+k)/(1-k)) \\ Charles R Greathouse IV, Jun 03 2015

Formula

Note: Sum_{k>=1} d(k)/2^k = Sum_{k>=1} 1/(2^k - 1).
Fast computation via Lambert series: 1.60669515... = Sum_{n>=1} x^(n^2)*(1+x^n)/(1-x^n) where x=1/2. - Joerg Arndt, May 24 2011
Equals (1/2) * A211705. - Amiram Eldar, Aug 01 2020
Equals 1/4 + Sum_{k >= 2} (1 + 8^k)/((2^k - 1)*2^(k^2+k)). See Mathematics Stack Exchange link. - Peter Bala, Jan 28 2022
Equals A066766 - A065443. - Amiram Eldar, Oct 16 2022

Extensions

More terms from Randall L Rathbun, Jan 16 2002