cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065515 Number of prime powers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 8, 8, 9, 9, 10, 10, 10, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 28, 29, 29, 29, 29, 30, 30, 31
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 27 2001

Keywords

Comments

a(n) > pi(n) = A000720(n).
From Chayim Lowen, Aug 05 2015: (Start)
a(n) <= pi(n) + A069623(n).
Conjecture: a(n) >= pi(A069623(n)) + pi(n) + 1.
Each term m is repeated A057820(m) times. (End)

Examples

			There are 9 prime powers <= 12: 1=2^0, 2, 3, 4=2^2, 5, 7, 8=2^3, 9=3^2 and 11, so a(12) = 9.
		

References

  • F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, Chapter 4.

Crossrefs

Cf. A000040, A000961, A000720, A276781 (ordinal transform).
A025528(n) = a(n) - 1.
Cf. A139555. - Reinhard Zumkeller, Oct 27 2010

Programs

  • Haskell
    a065515 n = length $ takeWhile (<= n) a000961_list
    -- Reinhard Zumkeller, Apr 25 2011
    
  • Maple
    N:= 100: # to get a(1) to a(N)
    L:= Vector(N):
    L[1]:= 1:
    p:= 1:
    while p < N do
      p:= nextprime(p);
      for k from 1 to floor(log[p](N)) do
        L[p^k] := 1;
      od
    od:
    ListTools:-PartialSums(convert(L,list)); # Robert Israel, May 03 2015
  • Mathematica
    a[n_] := 1 + Count[ Range[2, n], p_ /; Length[ FactorInteger[p]] == 1]; Table[a[n], {n, 1, 73}] (* Jean-François Alcover, Oct 12 2011 *)
    Accumulate[Table[If[Length[FactorInteger[n]]==1,1,0],{n,80}]] (* Harvey P. Dale, Aug 06 2016 *)
    Accumulate[Table[If[PrimePowerQ[n],1,0],{n,120}]]+1 (* Harvey P. Dale, Sep 29 2016 *)
  • PARI
    a(n)=n+=.5;1+sum(k=1,log(n)\log(2),primepi(n^(1/k))) \\ Charles R Greathouse IV, Apr 26 2012
    
  • Python
    from sympy import primepi
    from sympy.ntheory.primetest import integer_nthroot
    def A065515(n): return 1+sum(primepi(integer_nthroot(n,k)[0]) for k in range(1,n.bit_length())) # Chai Wah Wu, Jul 23 2024

Formula

Partial sums of A010055. - Reinhard Zumkeller, Nov 22 2009
a(n) = 1 + Sum_{k=1..log_2(n)} pi(floor(n^(1/k))). - Chayim Lowen, Aug 05 2015
a(n) = 1 + Sum_{k=2..n} floor(2*A001222(k)/(tau(k^2)-1)) where tau is A000005(n). - Anthony Browne, May 17 2016